Abstract simplicial complex

Geometric realization of a 3-dimensional abstract simplicial complex

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex.[1] For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).

In the context of matroids and greedoids, abstract simplicial complexes are also called independence systems.[2]

An abstract simplex can be studied algebraically by forming its Stanley–Reisner ring; this sets up a powerful relation between combinatorics and commutative algebra.

Definitions

A collection Δ of non-empty finite subsets of a set S is called a set-family.

A set-family Δ is called an abstract simplicial complex if, for every set X in Δ, and every non-empty subset YX, the set Y also belongs to Δ.

The finite sets that belong to Δ are called faces of the complex, and a face Y is said to belong to another face X if YX, so the definition of an abstract simplicial complex can be restated as saying that every face of a face of a complex Δ is itself a face of Δ. The vertex set of Δ is defined as V(Δ) = ∪Δ, the union of all faces of Δ. The elements of the vertex set are called the vertices of the complex. For every vertex v of Δ, the set {v} is a face of the complex, and every face of the complex is a finite subset of the vertex set.

The maximal faces of Δ (i.e., faces that are not subsets of any other faces) are called facets of the complex. The dimension of a face X in Δ is defined as dim(X) = |X| − 1: faces consisting of a single element are zero-dimensional, faces consisting of two elements are one-dimensional, etc. The dimension of the complex dim(Δ) is defined as the largest dimension of any of its faces, or infinity if there is no finite bound on the dimension of the faces.

The complex Δ is said to be finite if it has finitely many faces, or equivalently if its vertex set is finite. Also, Δ is said to be pure if it is finite-dimensional (but not necessarily finite) and every facet has the same dimension. In other words, Δ is pure if dim(Δ) is finite and every face is contained in a facet of dimension dim(Δ).

One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that do not have any incident edges.

A subcomplex of Δ is an abstract simplicial complex L such that every face of L belongs to Δ; that is, L ⊆ Δ and L is an abstract simplicial complex. A subcomplex that consists of all of the subsets of a single face of Δ is often called a simplex of Δ. (However, some authors use the term "simplex" for a face or, rather ambiguously, for both a face and the subcomplex associated with a face, by analogy with the non-abstract (geometric) simplicial complex terminology. To avoid ambiguity, we do not use in this article the term "simplex" for a face in the context of abstract complexes).

The d-skeleton of Δ is the subcomplex of Δ consisting of all of the faces of Δ that have dimension at most d. In particular, the 1-skeleton is called the underlying graph of Δ. The 0-skeleton of Δ can be identified with its vertex set, although formally it is not quite the same thing (the vertex set is a single set of all of the vertices, while the 0-skeleton is a family of single-element sets).

The link of a face Y in Δ, often denoted Δ/Y or lkΔ(Y), is the subcomplex of Δ defined by

Note that the link of the empty set is Δ itself.

Simplicial maps

Given two abstract simplicial complexes, Δ and Γ, a simplicial map is a function  f that maps the vertices of Δ to the vertices of Γ and that has the property that for any face X of Δ, the image  f (X) is a face of Γ. There is a category SCpx with abstract simplicial complexes as objects and simplicial maps as morphisms. This is equivalent to a suitable category defined using non-abstract simplicial complexes.

Moreover, the categorical point of view allows us to tighten the relation between the underlying set S of an abstract simplicial complex Δ and the vertex set V(Δ) ⊆ S of Δ: for the purposes of defining a category of abstract simplicial complexes, the elements of S not lying in V(Δ) are irrelevant. More precisely, SCpx is equivalent to the category where:

  • an object is a set S equipped with a collection of non-empty finite subsets Δ that contains all singletons and such that if X is in Δ and YX is non-empty, then Y also belongs to Δ.
  • a morphism from (S, Δ) to (T, Γ) is a function f : ST such that the image of any element of Δ is an element of Γ.

Geometric realization

We can associate to any abstract simplicial complex (ASC) K a topological space , called its geometric realization. There are several ways to define .

Geometric definition

Every geometric simplicial complex (GSC) determines an ASC:[3]: 14  the vertices of the ASC are the vertices of the GSC, and the faces of the ASC are the vertex-sets of the faces of the GSC. For example, consider a GSC with 4 vertices {1,2,3,4}, where the maximal faces are the triangle between {1,2,3} and the lines between {2,4} and {3,4}. Then, the corresponding ASC contains the sets {1,2,3}, {2,4}, {3,4}, and all their subsets. We say that the GSC is the geometric realization of the ASC.

Every ASC has a geometric realization. This is easy to see for a finite ASC.[3]: 14  Let . Identify the vertices in with the vertices of an (N-1)-dimensional simplex in . Construct the GSC {conv(F): F is a face in K}. Clearly, the ASC associated with this GSC is identical to K, so we have indeed constructed a geometric realization of K. In fact, an ASC can be realized using much fewer dimensions. If an ASC is d-dimensional (that is, the maximum cardinality of a simplex in it is d+1), then it has a geometric realization in , but might not have a geometric realization in [3]: 16  The special case d=1 corresponds to the well-known fact, that any graph can be plotted in where the edges are straight lines that do not intersect each other except in common vertices, but not any graph can be plotted in in this way.

If K is the standard combinatorial n-simplex, then can be naturally identified with Δn.

Every two geometric realizations of the same ASC, even in Euclidean spaces of different dimensions, are homeomorphic.[3]: 14  Therefore, given an ASC K, one can speak of the geometric realization of K.

Topological definition

The construction goes as follows. First, define as a subset of consisting of functions satisfying the two conditions:

Now think of the set of elements of with finite support as the direct limit of where A ranges over finite subsets of S, and give that direct limit the induced topology. Now give the subspace topology.

Categorical definition

Alternatively, let denote the category whose objects are the faces of K and whose morphisms are inclusions. Next choose a total order on the vertex set of K and define a functor F from to the category of topological spaces as follows. For any face X in K of dimension n, let F(X) = Δn be the standard n-simplex. The order on the vertex set then specifies a unique bijection between the elements of X and vertices of Δn, ordered in the usual way e0 < e1 < ... < en. If YX is a face of dimension m < n, then this bijection specifies a unique m-dimensional face of Δn. Define F(Y) → F(X) to be the unique affine linear embedding of Δm as that distinguished face of Δn, such that the map on vertices is order-preserving.

We can then define the geometric realization as the colimit of the functor F. More specifically is the quotient space of the disjoint union

by the equivalence relation that identifies a point yF(Y) with its image under the map F(Y) → F(X), for every inclusion YX.

Examples

1. Let V be a finite set of cardinality n + 1. The combinatorial n-simplex with vertex-set V is an ASC whose faces are all nonempty subsets of V (i.e., it is the power set of V). If V = S = {0, 1, ..., n}, then this ASC is called the standard combinatorial n-simplex.

2. Let G be an undirected graph. The clique complex of G is an ASC whose faces are all cliques (complete subgraphs) of G. The independence complex of G is an ASC whose faces are all independent sets of G (it is the clique complex of the complement graph of G). Clique complexes are the prototypical example of flag complexes. A flag complex is a complex K with the property that every set, all of whose 2-element subsets are faces of K, is itself a face of K.

3. Let H be a hypergraph. A matching in H is a set of edges of H, in which every two edges are disjoint. The matching complex of H is an ASC whose faces are all matchings in H. It is the independence complex of the line graph of H.

4. Let P be a partially ordered set (poset). The order complex of P is an ASC whose faces are all finite chains in P. Its homology groups and other topological invariants contain important information about the poset P.

5. Let M be a metric space and δ a real number. The Vietoris–Rips complex is an ASC whose faces are the finite subsets of M with diameter at most δ. It has applications in homology theory, hyperbolic groups, image processing, and mobile ad hoc networking. It is another example of a flag complex.

6. Let be a square-free monomial ideal in a polynomial ring (that is, an ideal generated by products of subsets of variables). Then the exponent vectors of those square-free monomials of that are not in determine an abstract simplicial complex via the map . In fact, there is a bijection between (non-empty) abstract simplicial complexes on n vertices and square-free monomial ideals in S. If is the square-free ideal corresponding to the simplicial complex then the quotient is known as the Stanley–Reisner ring of .

7. For any open covering C of a topological space, the nerve complex of C is an abstract simplicial complex containing the sub-families of C with a non-empty intersection.

Enumeration

The number of abstract simplicial complexes on up to n labeled elements (that is on a set S of size n) is one less than the nth Dedekind number. These numbers grow very rapidly, and are known only for n ≤ 9; the Dedekind numbers are (starting with n = 0):

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787, 286386577668298411128469151667598498812365 (sequence A014466 in the OEIS). This corresponds to the number of non-empty antichains of subsets of an n set.

The number of abstract simplicial complexes whose vertices are exactly n labeled elements is given by the sequence "1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993" (sequence A006126 in the OEIS), starting at n = 1. This corresponds to the number of antichain covers of a labeled n-set; there is a clear bijection between antichain covers of an n-set and simplicial complexes on n elements described in terms of their maximal faces.

The number of abstract simplicial complexes on exactly n unlabeled elements is given by the sequence "1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210" (sequence A006602 in the OEIS), starting at n = 1.

Computational problems

The simplicial complex recognition problem is: given a finite ASC, decide whether its geometric realization is homeomorphic to a given geometric object. This problem is undecidable for any d-dimensional manifolds for d ≥ 5.[4]

Relation to other concepts

An abstract simplicial complex with an additional property called the augmentation property or the exchange property yields a matroid. The following expression shows the relations between the terms:

HYPERGRAPHS = SET-FAMILIES ⊃ INDEPENDENCE-SYSTEMS = ABSTRACT-SIMPLICIAL-COMPLEXES ⊃ MATROIDS.

See also

References

  1. ^ Lee, John M., Introduction to Topological Manifolds, Springer 2011, ISBN 1-4419-7939-5, p153
  2. ^ Korte, Bernhard; Lovász, László; Schrader, Rainer (1991). Greedoids. Springer-Verlag. p. 9. ISBN 3-540-18190-3.
  3. ^ a b c d Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3
  4. ^ Stillwell, John (1993), Classical Topology and Combinatorial Group Theory, Graduate Texts in Mathematics, vol. 72, Springer, p. 247, ISBN 9780387979700.

Read other articles:

Amnesty International Gründung 28. Mai 1961 Gründer Peter Benenson Sitz London, Vereinigtes Konigreich Vereinigtes Königreich Schwerpunkt Menschenrechtsorganisation Personen Frankreich Agnès Callamard(Internationale Generalsekretärin)[1][2] Vereinigtes Konigreich Peter Benenson(Gründer) Umsatz 309.000.000 Euro (2018) Mitglieder ca. 10.000.000[3] Website www.amnesty.org Amnesty International (von englisch amnesty, Begnadigung, Straferlass, Amnestie) is…

Indonesian Choice Awards adalah sebuah ajang penghargaan yang digelar oleh NET. yang dimulai pada tahun 2014 saat NET. berulang tahun yang pertama. Pemenang Indonesian Choice Awards dipilih langsung oleh publik melalui Facebook dan Twitter.[1] Berikut ini daftar nominasi dan pemenang Indonesian Choice Awards berdasarkan kategori penghargaan. Kategori yang dihadirkan 2014 2015 2016 2017 2018 Song of the Year Ya Ya Ya Ya Ya Album of the Year Ya Ya Ya Ya Ya Male Singer of the Year Ya Ya Ya …

سفاين أودفار موين معلومات شخصية الميلاد 22 يناير 1979 (العمر 45 سنة)مستشفى هاوغسوند  [لغات أخرى]‏  مواطنة النرويج  عضو في اتحاد النرويج لكرة القدم  الحياة العملية المهنة حكم كرة قدم  الرياضة كرة القدم  بلد الرياضة النرويج  تهم التهم تهرب ضريبي[1]  تعدي…

Kota Muñoz component city (en) Tempat categoria:Articles mancats de coordenades Negara berdaulatFilipinaRegion di FilipinaLuzon TengahProvinsi di FilipinaNueva Ecija NegaraFilipina PendudukTotal84.308  (2020 )Tempat tinggal20.933  (2020 )Bahasa resmiBahasa Iloko dan Tagalog GeografiLuas wilayah163,05 km² [convert: unit tak dikenal]Ketinggian95 m Berbatasan denganLupao Santo Domingo Talavera SejarahPembuatan1913 Informasi tambahanKode pos3119 dan 3120 Zona waktuUTC+8 Kode telepon…

Dewan Perwakilan Rakyat Daerah Kota Bogor Déwan Pangwakil Rahayat Daérah Kota BogorDewan Perwakilan Rakyat Daerah Kota Bogor2019-2024JenisJenisUnikameral SejarahSesi baru dimulai20 Agustus 2019PimpinanKetuaH. Atang Trisnanto, S.Hut., M.Si. (PKS) sejak 26 September 2019 Wakil Ketua IJenal Mutaqin, S.H. (Gerindra) sejak 26 September 2019 Wakil Ketua IIH. Dadang Iskandar Danubrata, S.E. (PDI-P) sejak 26 September 2019 Wakil Ketua IIIM. Rusli Prihatevy, S.E. (Golkar) sejak 16 Agust…

Untuk ayahnya, lihat Frank Lampard (pemain sepak bola, kelahiran 1948). Perlindungan dari anon Frank LampardOBE Lampard sebagai kepala pelatih Chelsea pada 2019Informasi pribadiNama lengkap Frank James Lampard[1]Tanggal lahir 20 Juni 1978 (umur 45)[2]Tempat lahir Romford, London, InggrisTinggi 185 m (606 ft 11 in)[3]Posisi bermain GelandangKarier junior1994–1995 West Ham UnitedKarier senior*Tahun Tim Tampil (Gol)1995–2001 West Ham United 187 (39)19…

Sean Kelly Personal informationFull name Sean KellyDate of birth (1993-11-01) 1 November 1993 (age 30)Place of birth Glasgow, ScotlandHeight 1.88 m (6 ft 2 in)Position(s) DefenderTeam informationCurrent team LivingstonNumber 24Senior career*Years Team Apps (Gls)2012–2016 St Mirren 90 (6)2012 → East Stirlingshire (loan) 10 (0)2016–2017 AFC Wimbledon 26 (2)2017–2020 Ross County 51 (1)2020–2021 Falkirk 14 (0)2021– Livingston 61 (5)International career‡2014 Scotland…

العلاقات الباهاماسية النيجيرية باهاماس نيجيريا   باهاماس   نيجيريا تعديل مصدري - تعديل   العلاقات الباهاماسية النيجيرية هي العلاقات الثنائية التي تجمع بين باهاماس ونيجيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه …

Konten situs web, salah satu jenis media elektronik. Media elektronik adalah media yang menggunakan elektronik atau energi elektromekanik bagi pengguna akhir untuk mengakses kontennya. Istilah ini merupakan kontras dari media statis (terutama media cetak), yang meskipun sering dihasilkan secara elektronis tetapi tidak membutuhkan elektronik untuk diakses oleh pengguna akhir. Sumber media elektronik yang familiar bagi pengguna umum antara lain adalah rekaman video, rekaman audio, presentasi multi…

Pour les articles homonymes, voir Félines. Félines Héraldique Administration Pays France Région Auvergne-Rhône-Alpes Département Haute-Loire Arrondissement Brioude Intercommunalité Communauté d'agglomération du Puy-en-Velay Maire Mandat Philippe Meyzonet 2020-2026 Code postal 43160 Code commune 43093 Démographie Gentilé Félinois[1] Populationmunicipale 310 hab. (2021 ) Densité 15 hab./km2 Géographie Coordonnées 45° 16′ 23″ nord, 3° 44′ 39…

Grand Theft Auto AdvanceDéveloppeur Digital EclipseÉditeur Take-Two InteractiveDistributeur Rockstar GamesScénariste Rockstar GamesDate de sortie INT : 26 octobre 2004 Franchise Grand Theft AutoGenre Action-aventure, conduite, tirMode de jeu SoloPlate-forme Game Boy AdvanceLangue Français[1]Évaluation PEGI : 16+ ?Site web www.rockstargames.com/grandtheftauto/gbamodifier - modifier le code - modifier Wikidata Grand Theft Auto Advance (souvent référencé sous le titre Grand Theft …

Torneo Rio-San Paolo 1997Torneio Rio-São Paulo 1997 Competizione Torneo Rio-San Paolo Sport Calcio Edizione 20ª Date dal 18 gennaio 1997al 6 febbraio 1997 Luogo  Brasile Partecipanti 8 Risultati Vincitore  Santos(5º titolo) Secondo  Flamengo Statistiche Miglior marcatore Romário (Flamengo), 7 gol Incontri disputati 14 Gol segnati 45 (3,21 per incontro) Pubblico 285 909 (20 422 per incontro) Cronologia della competizione 1993 1998 Manuale Il Torneo R…

American basketball player Gabe DeVoeDeVoe with Clemson in 2017Free AgentPositionShooting guardPersonal informationBorn (1995-12-16) December 16, 1995 (age 28)NationalityAmericanListed height6 ft 3 in (1.91 m)Listed weight207 lb (94 kg)Career informationHigh schoolShelby(Shelby, North Carolina)CollegeClemson (2014–2018)NBA draft2018: undraftedPlaying career2018–presentCareer history2018–2019Zielona Góra2019–2020Dzūkija Alytus2020–2021Budivelnyk2021–202…

Elena Teodorini Grave at Sfânta Vineri Cemetery Elena Theodorini (or Teodorini; née Ellen Morton or Monzunu; 25 March 1857 – 27 February 1926) was a Romanian soprano and mezzo-soprano. Biography Born in Craiova, Principality of Wallachia, into a family of Romanian actors of Greek descent, she began to study singing and piano at the Milan Conservatory. She debuted as a mezzo-soprano in Cuneo, with Maria di Rohan. She then sang in theaters in provinces of Italy, as well as the Bucharest Opera.…

Tank Cruiser Mk I (A9)Tank Cruiser Mk I (A9)Karakteristik umumAwak6 orang (komandan, penembak, pengisi peluru, pengemudi, 2 org penembak MG)Panjang5.8 mLebar2.5 mTinggi2.65 mBerat12 tonPerlindungan dan persenjataanKetebalan baja6 - 14 mmSenjata utamaQF 2 pounder - 100 putaranSenjata pelengkap3 x Senapan Mesin Vickers kaliber 0.303 - 3000 putaranMobilitasMesinAEC 179 - 6 silinder diesel (150 dk (daya kuda))Suspensisprung (tipe bogie 3 roda)Kecepatan40 km/jDaya jelajah241 kmlbs Cruiser Mk I atau A…

Waterfront park in Admiralty, Hong Kong Tamar Park添馬公園Viewing of Legislative Council ComplexTypePublic parkLocationHarcourt Road, Admiralty, Hong KongCoordinates22°16′54″N 114°09′56″E / 22.28161°N 114.1656°E / 22.28161; 114.1656Area20,490 sqm2[1]Opened10 October 2011; 12 years ago (2011-10-10)Operated byLeisure and Cultural Services Department[1]StatusBuilt and open to publicChinese nameTraditional Chinese添…

Not to be confused with Methyl isocyanide. Methyl isocyanate Names Preferred IUPAC name Isocyanatomethane Other names Methyl carbylamineMIC Identifiers CAS Number 624-83-9 Y 3D model (JSmol) Interactive image ChEBI CHEBI:59059 Y ChemSpider 11727 Y ECHA InfoCard 100.009.879 IUPHAR/BPS 6290 PubChem CID 12228 UNII C588JJ4BV9 Y CompTox Dashboard (EPA) DTXSID1023786 InChI InChI=1S/C2H3NO/c1-3-2-4/h1H3 YKey: HAMGRBXTJNITHG-UHFFFAOYSA-N Y SMILES O=C=NC Properties Chem…

Indian film director, producer (1929–2018) Muktha SrinivasanBornVenkatachary Srinivasan(1929-10-31)31 October 1929Malapuram, Tamil Nadu, British RajDied29 May 2018(2018-05-29) (aged 88)NationalityIndianOccupationsFilm directorproducer Muktha Srinivasan (1929 – 2018) was an Indian film director and producer.[1] Personal life This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and re…

Voce principale: UEFA Champions League 2022-2023. UEFA Champions League 2022-2023 - Fase a gironiUEFA Champions League 2022-2023 - Group stage Competizione UEFA Champions League Sport Calcio Edizione Organizzatore UEFA Date dal 6 settembre 2022al 2 novembre 2022 Partecipanti 32 Statistiche Incontri disputati 96 Gol segnati 304 (3,17 per incontro) Pubblico 4 465 194 (46 512 per incontro) Cronologia della competizione UCL 2021-2022 GS UCL 2023-2024 GS Manuale La fase a …

Town in North Rhine-Westphalia, GermanyLohmar TownProtestant church in Honrath Coat of armsLocation of Lohmar within Rhein-Sieg-Kreis district Lohmar Show map of GermanyLohmar Show map of North Rhine-WestphaliaCoordinates: 50°49′N 7°13′E / 50.817°N 7.217°E / 50.817; 7.217CountryGermanyStateNorth Rhine-WestphaliaAdmin. regionKöln DistrictRhein-Sieg-Kreis Subdivisions12Government • Mayor (2020–25) Claudia Wieja[1] (Greens)Area •…

Kembali kehalaman sebelumnya