Clifford torus

A stereographic projection of a Clifford torus performing a simple rotation
Topologically a rectangle is the fundamental polygon of a torus, with opposite edges sewn together.

In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S1
a
and S1
b
(in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1
a
and S1
b
each exists in its own independent embedding space R2
a
and R2
b
, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

Stated another way, a torus embedded in R3 is an asymmetric reduced-dimension projection of the maximally symmetric Clifford torus embedded in R4. The relationship is similar to that of projecting the edges of a cube onto a sheet of paper. Such a projection creates a lower-dimensional image that accurately captures the connectivity of the cube edges, but also requires the arbitrary selection and removal of one of the three fully symmetric and interchangeable axes of the cube.

If S1
a
and S1
b
each has a radius of 1/2, their Clifford torus product will fit perfectly within the unit 3-sphere S3, which is a 3-dimensional submanifold of R4. When mathematically convenient, the Clifford torus can be viewed as residing inside the complex coordinate space C2, since C2 is topologically equivalent to R4.

The Clifford torus is an example of a square torus, because it is isometric to a square with opposite sides identified. (Some video games, including Asteroids, are played on a square torus; anything that moves off one edge of the screen reappears on the opposite edge with the same orientation.) It is further known as a Euclidean 2-torus (the "2" is its topological dimension); figures drawn on it obey Euclidean geometry[clarification needed] as if it were flat, whereas the surface of a common "doughnut"-shaped torus is positively curved on the outer rim and negatively curved on the inner. Although having a different geometry than the standard embedding of a torus in three-dimensional Euclidean space, the square torus can also be embedded into three-dimensional space, by the Nash embedding theorem; one possible embedding modifies the standard torus by a fractal set of ripples running in two perpendicular directions along the surface.[1]

Formal definition

The unit circle S1 in R2 can be parameterized by an angle coordinate:

In another copy of R2, take another copy of the unit circle

Then the Clifford torus is

Since each copy of S1 is an embedded submanifold of R2, the Clifford torus is an embedded torus in R2 × R2 = R4.

If R4 is given by coordinates (x1, y1, x2, y2), then the Clifford torus is given by

This shows that in R4 the Clifford torus is a submanifold of the unit 3-sphere S3.

It is easy to verify that the Clifford torus is a minimal surface in S3.

Alternative derivation using complex numbers

It is also common to consider the Clifford torus as an embedded torus in C2. In two copies of C, we have the following unit circles (still parametrized by an angle coordinate):

and

Now the Clifford torus appears as

As before, this is an embedded submanifold, in the unit sphere S3 in C2.

If C2 is given by coordinates (z1, z2), then the Clifford torus is given by

In the Clifford torus as defined above, the distance of any point of the Clifford torus to the origin of C2 is

The set of all points at a distance of 1 from the origin of C2 is the unit 3-sphere, and so the Clifford torus sits inside this 3-sphere. In fact, the Clifford torus divides this 3-sphere into two congruent solid tori (see Heegaard splitting[2]).

Since O(4) acts on R4 by orthogonal transformations, we can move the "standard" Clifford torus defined above to other equivalent tori via rigid rotations. These are all called "Clifford tori". The six-dimensional group O(4) acts transitively on the space of all such Clifford tori sitting inside the 3-sphere. However, this action has a two-dimensional stabilizer (see group action) since rotation in the meridional and longitudinal directions of a torus preserves the torus (as opposed to moving it to a different torus). Hence, there is actually a four-dimensional space of Clifford tori.[2] In fact, there is a one-to-one correspondence between Clifford tori in the unit 3-sphere and pairs of polar great circles (i.e., great circles that are maximally separated). Given a Clifford torus, the associated polar great circles are the core circles of each of the two complementary regions. Conversely, given any pair of polar great circles, the associated Clifford torus is the locus of points of the 3-sphere that are equidistant from the two circles.

More general definition of Clifford tori

The flat tori in the unit 3-sphere S3 that are the product of circles of radius r in one 2-plane R2 and radius 1 − r2 in another 2-plane R2 are sometimes also called "Clifford tori".

The same circles may be thought of as having radii that are cos θ and sin θ for some angle θ in the range 0 ≤ θπ/2 (where we include the degenerate cases θ = 0 and θ = π/2).

The union for 0 ≤ θπ/2 of all of these tori of form

(where S(r) denotes the circle in the plane R2 defined by having center (0, 0) and radius r) is the 3-sphere S3. Note that we must include the two degenerate cases θ = 0 and θ = π/2, each of which corresponds to a great circle of S3, and which together constitute a pair of polar great circles.

This torus Tθ is readily seen to have area

so only the torus Tπ/4 has the maximum possible area of 2π2. This torus Tπ/4 is the torus Tθ that is most commonly called the "Clifford torus" – and it is also the only one of the Tθ that is a minimal surface in S3.

Still more general definition of Clifford tori in higher dimensions

Any unit sphere S2n−1 in an even-dimensional euclidean space R2n = Cn may be expressed in terms of the complex coordinates as follows:

Then, for any non-negative numbers r1, ..., rn such that r12 + ... + rn2 = 1, we may define a generalized Clifford torus as follows:

These generalized Clifford tori are all disjoint from one another. We may once again conclude that the union of each one of these tori Tr1, ..., rn is the unit (2n − 1)-sphere S2n−1 (where we must again include the degenerate cases where at least one of the radii rk = 0).

Properties

  • The Clifford torus is "flat": Every point has a neighborhood that can be flattened out onto a piece of the plane without distortion, unlike the standard torus of revolution.
  • The Clifford torus divides the 3-sphere into two congruent solid tori. (In a stereographic projection, the Clifford torus appears as a standard torus of revolution. The fact that it divides the 3-sphere equally means that the interior of the projected torus is equivalent to the exterior.)

Uses in mathematics

In symplectic geometry, the Clifford torus gives an example of an embedded Lagrangian submanifold of C2 with the standard symplectic structure. (Of course, any product of embedded circles in C gives a Lagrangian torus of C2, so these need not be Clifford tori.)

The Lawson conjecture states that every minimally embedded torus in the 3-sphere with the round metric must be a Clifford torus. A proof of this conjecture was published by Simon Brendle in 2013.[3]

Clifford tori and their images under conformal transformations are the global minimizers of the Willmore functional.

See also

References

  1. ^ Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238.
  2. ^ a b Norbs, P. (September 2005), "The 12th problem" (PDF), The Australian Mathematical Society Gazette, 32 (4): 244–246
  3. ^ Brendle, Simon (2013), "Embedded minimal tori in S3 and the Lawson conjecture", Acta Mathematica, 211 (2): 177–190, arXiv:1203.6597, doi:10.1007/s11511-013-0101-2; see reviews by João Lucas Marques Barbosa (MR3143888) and Ye-Lin Ou (Zbl 1305.53061)

Read other articles:

Anthony Lopes Lopes pada Piala Dunia FIFA 2018Informasi pribadiNama lengkap Anthony Lopes[1]Tanggal lahir 1 Oktober 1990 (umur 33)[1]Tempat lahir Givors, Lyon, Prancis[2]Tinggi 185 cm (6 ft 1 in)[3]Posisi bermain Penjaga gawangInformasi klubKlub saat ini LyonNomor 1Karier junior1996–2000 OSGL Football2000–2008 LyonKarier senior*Tahun Tim Tampil (Gol)2008–2012 Lyon B 38 (0)2012– Lyon 331 (0)Tim nasional‡2007 Portugal U-17 6 (0)2007 Por…

Halaman ini berisi artikel tentang tokoh kitab suci. Untuk hawa yang dirasakan panca indra, lihat suhu. HawaLahirTaman EdenDihormati di Islam Gereja Katolik Roma Gereja Ortodoks Timur Gereja Ortodoks Oriental Baháʼí Pesta24 Desember Hawa (Ibrani: חַוָּהcode: he is deprecated , Ḥawwāh, Arab: حواء, romanized: Hawwāʾcode: ar is deprecated ; berarti: hidup) merupakan sosok wanita pertama yang diciptakan oleh Allah untuk mendampingi Nabi Adam, dan tokoh dalam agama-agama Ibrahi…

Banten merupakan salah satu provinsi di Indonesia sekaligus merupakan nama kerajaan Islam. Banten juga dikenal karena aktivitas perdagangan, setelah Portugis masuk ke wilayah Nusantara pada abad ke-16 atau tepatnya tahun 1511. Banten memiliki sejumlah peninggalan arkeologi yang membuktikan bahwa wilayah tersebut sudah ditempati oleh manusia purba sejak zaman batu. Prasejarah Bukti bahwa Banten sudah ditempati sejak zaman batu adalah ditemukannya artefak kuno berupa alat batu di situs Cigeulis, P…

1921 Eeuwen: 19e eeuw · 20e eeuw · 21e eeuw Decennia: 1910-1919 · 1920-1929 · 1930-1939 Jaren: << · < · 1920 · 1921 · 1922 · > · >> Maanden: jan · feb · mrt · apr · mei · jun jul · aug · sep · okt · nov · dec Jaartelling in verschillende culturen Ab urbe condita: 2674 MMDCLXXIV Armeense jaartelling: 1370 – 1371ԹՎ ՌՅՀ – ՌՅՀԱ Chinese jaartelling: 46…

العلاقات التشادية المالية تشاد مالي   تشاد   مالي تعديل مصدري - تعديل   العلاقات التشادية المالية هي العلاقات الثنائية التي تجمع بين تشاد ومالي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة تشاد مالي المساحة (كم2…

Archives Archive 1Archive 2Archive 3Archive 4Archive 5Archive 6Archive 7Archive 8Archive 9Archive 10Archive 11Archive 12Archive 13Archive 14Archive 15Archive 16Archive 17Archive 18Archive 19 This page has archives. Sections older than 30 days may be automatically archived by Lowercase sigmabot III when more than 4 sections are present. This user is one of the 400 most active English Wikipedians of all time. This user has been editing Wikipedia for more than twenty years. Support request with tea…

Marc Andrew MitscherWakil Laksamana Marc A. Mitscher pada Perang Dunia IIJulukanPeteLahir26 Januari 1887Hillsboro, WisconsinMeninggal3 Februari 1947(1947-02-03) (umur 60)Norfolk, VirginiaPengabdian Amerika SerikatDinas/cabang Angkatan Laut Amerika SerikatLama dinas1910–1947Pangkat LaksamanaNRP7591KomandanUSS Wright USS Hornet Commander Air, Solomon Islands Fast Carrier Task Force Eighth Fleet Atlantic FleetPerang/pertempuranPerang Dunia IPerang Dunia II Penyerbuan Doolittle…

Article connexe : Sindhudesh. Drapeau utilisé par les nationalistes sindhis. Le nationalisme sindhi (en sindhi : سنڌي قومپرستي) est une idéologie qui prétend que les Sindis, un groupe ethnolinguistique originaire de la province pakistanaise du Sind, forment une nation distincte. Après l'indépendance du Bangladesh en 1971, Ghulam Murtaza Shah Syed a donné une nouvelle orientation au nationalisme et a fondé le Jeay Sindh Mahaz en 1972 et a présenté l'idée de Sindhud…

Albanian government ministryMinistry of Education and SportsMinistria e Arsimit dhe SportitDepartment overviewFormed4 December 1912; 111 years ago (1912-12-04)JurisdictionAlbaniaHeadquartersTiranaMinister responsibleOgerta ManastirliuWebsitearsimi.gov.al The Ministry of Education and Sports (Albanian: Ministria e Arsimit dhe Sportit) is a department of the Albanian Government responsible for Education and Sport. The current minister is Evis Kushi.[1] History Since the e…

Pallonji Shapoorji MistryLahir1929 (umur 94–95)KebangsaanIrlandiaWarga negaraIrlandia (sebelumnya India)[1]PekerjaanPengusahaDikenal atas18.3% saham di Tata SonsKekayaan bersihUS$25.7 miliar (Januari 2021)[2]GelarKetua Shapoorji Pallonji GroupSuami/istriPatsy Perin DubashAnak4, termasuk Cyrus Mistry Pallonji Shapoorji Mistry (kelahiran 1929) adalah seorang pengusaha konstruksi miliuner Irlandia kelahiran India dan ketua Shapoorji Pallonji Group yang merupakan oran…

American lawyer Denise GeorgeGeorge in 2019.18th Attorney General of the United States Virgin IslandsIn officeMay 14, 2019 – January 1, 2023GovernorAlbert BryanPreceded byClaude WalkerSucceeded byCarol Thomas-Jacobs (acting) Personal detailsBornSaint Thomas, U.S. Virgin IslandsEducationUniversity of Maryland, College Park (BA)Howard University (JD) Denise N. George, also known as Denise George-Counts, is a U.S. Virgin Islands lawyer and former television news reporter who served as th…

Tomsk kotakota besar Томск (ru) flag of Tomsk coat of arms of Tomsk Tempat Negara berdaulatRusiaOblast di RusiaOblast TomskUrban okrug in RussiaTomsk Urban Okrug Ibu kota dariOblast Tomsk Tomsky District Tomsk Urban Okrug Tomsk Governorate Tomsky Uyezd Tomsk Okrug (1925–1930) NegaraRusia Pembagian administratifQ4258384 Q4221687 Q4426470 Oktyabrsky City District, Tomsk PendudukTotal572.740  (2017 )GeografiLuas wilayah294,6 km² [convert: unit tak dikenal]Dekat dengan perairan…

Why Girls Love SailorsPoster teatrikalSutradaraFred GuiolProduserHal RoachDitulis olehHal RoachH.M. Walker (titel)PemeranStan LaurelOliver HardyViola RichardAnita GarvinMalcolm WaitePenyuntingRichard C. CurrierDistributorPathé ExchangeTanggal rilis 17 Juli 1927 (1927-07-17) Durasi20 menitNegaraAmerika SerikatBahasaBisu (antarjudul Inggris) Why Girls Love Sailors adalah sebuah film bisu pendek komedi Amerika yang disutradarai oleh Fred Guiol untuk Hal Roach Studios yang dibintangi oleh Stan…

Hamilton, BermudaKotaJalanan utama di Hamilton.Peta letak kota Hamilton di wilayah Bermuda.Koordinat: 32°17′35″N 64°46′55″W / 32.293°N 64.782°W / 32.293; -64.782Koordinat: 32°17′35″N 64°46′55″W / 32.293°N 64.782°W / 32.293; -64.782Negara Britania RayaWilayah Seberang Laut BermudaParokiPembrokeDidirikan1790Pemerintahan • WalikotaCharles R. Gosling[2]Luas • Total0,28 sq mi (70…

American film director This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the art…

Postal system in the United Kingdom This article is about the UK postal system before 1970. For its subsequent history and current operation, see Royal Mail and Post Office Ltd. For other uses, see General Post Office (disambiguation). General Post OfficeRoyal Arms of HM GovernmentAgency overviewFormed31 July 1635 (1635-07-31) (public service)29 December 1660 (1660-12-29) (Post Office Act 1660)Dissolved1 October 1969 (1969-10-01)Superseding agencyPost…

Anne ArcherPekerjaanAktrisTahun aktif1970–sekarangSuami/istriWilliam Davis (1969–1977)Terry Jastrow (1978–sekarang)Situs webhttp://www.annearcher.com/ Anne Archer (lahir 24 Agustus 1947) adalah seorang aktris berkebangsaan Amerika Serikat yang memenangkan nominasi Academy Award. Dia dilahirkan di Los Angeles, California. Dia berkarier di dunia film sejak tahun 1970. Filmografi The Ghosts of Girlfriends Past (2009) Quantum Quest: A Cassini Space Odyssey (2009) Felon (2008) End Game (20…

2018 United States House of Representatives elections in Michigan ← 2016 November 6, 2018 (2018-11-06) 2020 → All 14 Michigan seats to the United States House of RepresentativesTurnout57.8%   Majority party Minority party   Party Democratic Republican Last election 5 9 Seats before 4 9 Seats won 7 7 Seat change 2 2 Popular vote 2,165,586 1,847,480 Percentage 52.33% 44.65% Swing 5.36% 3.38% Congressional district results Coun…

Marine Fighter Attack Squadron 124VMA-124 InsigniaActive2 September 1942 - 1996CountryUnited StatesBranchUSMCTypeFighter/Attack squadronRoleAir interdictionNickname(s)Whistling DeathWild AcesCheckerboardsTail CodeQPEngagementsWorld War II* Battle of Guadalcanal* Solomon Islands Campaign* Philippines Campaign, 1944-45* Battle of Iwo Jima* Battle of OkinawaAircraft flownAttackA-4 SkyhawkFighterF4U CorsairF9F CougarFJ-4B FuryMilitary unit Marine Fighter Attack Squadron 124 (VMFA-124) was a flying s…

NFL team season 1988 Los Angeles Raiders seasonOwnerAl DavisGeneral managerAl DavisHead coachMike ShanahanHome fieldLos Angeles Memorial ColiseumLocal radioKIIS–AM 1150ResultsRecord7–9Division place3rd AFC WestPlayoff finishDid not qualify ← 1987 Raiders seasons 1989 → The 1988 Los Angeles Raiders season was the franchise's 29th season overall, and the franchise's 19th season in the National Football League. Mike Shanahan was hired as head coach, and the club finis…

Kembali kehalaman sebelumnya