Dry-ice blasting

Dry-ice blasting used to clean a rubber mold

Dry-ice blasting is a form of carbon dioxide cleaning, where dry ice, the solid form of carbon dioxide, is accelerated in a pressurized air stream and directed at a surface in order to clean it.[1][2]

The method is similar to other forms of media blasting such as sand blasting, plastic bead blasting, or sodablasting in that it cleans surfaces using a medium accelerated in a pressurized air stream, but dry-ice blasting uses dry ice as the blasting medium. Dry-ice blasting is nonabrasive, non-conductive, nonflammable, and non-toxic.

Dry-ice blasting is an efficient[3][verification needed] cleaning method. Dry ice is made of reclaimed carbon dioxide that is produced from other industrial processes, and is an approved media by the EPA, FDA and USDA. It also reduces or eliminates employee exposure to the use of chemical cleaning agents.

Compared to other media blasting methods, dry-ice blasting does not create secondary waste or chemical residues as dry ice sublimates, or converts back to a gaseous state, when it hits the surface that is being cleaned. Dry-ice blasting does not require clean-up of a blasting medium.[4] The waste products, which includes just the dislodged media, can be swept up, vacuumed or washed away depending on the containment.

Method

Dry-ice blasting illustration

Dry-ice blasting involves propelling pellets at extremely high speeds. The actual dry ice pellets are quite soft, and much less dense than other media used in blast-cleaning (i.e. sand or plastic pellets). Upon impact, the pellet sublimates almost immediately, transferring minimal kinetic energy to the surface on impact and producing minimal abrasion. The sublimation process absorbs a large volume of heat from the surface, producing shear stresses due to thermal shock.[5] This is assumed[by whom?] to improve cleaning as the top layer of dirt or contaminant is expected to transfer more heat than the underlying substrate and flake off more easily. The efficiency and effectiveness of this process depends on the thermal conductivity of the substrate and contaminant. The rapid change in state from solid to gas also causes microscopic shock waves, which are also thought to assist in removing the contaminant.[citation needed]

Equipment

The dry ice used can be in solid pellet form or shaved from a larger block of ice. The shaved ice block produces a less dense ice medium and is more delicate than the solid pellet system. In addition, pellets may be made by either compressing dry ice snow, or using tanks of liquid CO2 to form solid pellets.[6] Dry ice made with compressed snow breaks apart more easily and is not as aggressive for cleaning.

Dry-ice blasting technology can trace its roots to conventional abrasive blasting. The differences between an abrasive-blasting machine and a dry-ice blasting machine are in how they handle the blast media. Unlike sand or other media, dry ice is generally used at its sublimation temperature. Other differences include systems for preventing the ice from forming snowball-like jams, and different materials to allow operation at very low temperatures.

There are two methods of dry-ice blasting, two-hose and single hose. The single hose system is more aggressive for cleaning, since the particles are accelerated to faster speeds.

Two-hose dry-ice blasting was developed before the single-hose system. The two-hose dry-ice blasting approach is very similar to a suction-feed abrasive blast system. Compressed air is delivered in one hose, and ice pellets are sucked out of a second hose by the venturi effect. Compared to a single-hose system, the two-hose system delivers ice particles less forcefully (approximately 5% for a given air supply). For a given amount of compressed air, two-hose systems can have less vertical distance between the machine and applicator. For most systems available today this limit is well in excess of 7.5 m (25 feet). Two-hose systems are generally cheaper to produce due to a simpler delivery system. These systems are rarely seen today as they are less efficient in most applications. Their principal advantage is in allowing finer particles of ice to be delivered to the applicator as the late combination of warm air with cold ice results in less sublimation in the hose. These systems allow for more delicate surfaces to be cleaned such as semiconductors.[citation needed]

The first dry-ice blasting machine to be commercialized was a single-hose system. It was developed by Cold Jet, LLC in 1986,[7][8] and uses a single hose to deliver air blasts and dry ice. Single-hose dry-ice blasters share many of the advantages of single-hose abrasive-blast systems. To avoid the potential dangers of a pressurized hopper, single-hose dry-ice blasters make use of a quickly cycling airlock. The single-hose system can use a longer hose than its double-hose counterpart without a significant drop in pressure when the ice leaves the hose. The additional power comes at the cost of increased complexity. Single-hose systems are used where more aggressive cleaning is an advantage. This allows heavier build-up to be cleaned and allows moderate buildup to be cleaned faster.

In 2014, a Slovakian company, ICS Ice Cleaning Systems, patented a set of crushing rollers to reduce the size of particles leaving the applicator gun. This allowed the operator for the first time to control the fractional size of each dry ice pellet. From the International standard 3mm to 1.5mm and smaller if desired. Simply by the push of an electronic button. Allowing for applications on more delicate surfaces without harming them.

Additionally, one could shoot these smaller fractions of dry ice pellets towards multiple surfaces with varying coatings, compositions, and textures, while mitigating risks of damaged surfaces. While attempted previously with nozzle fragmentation devices, these new crushing rollers provided accuracy and efficiency not previously achieved. In 2020, a Florida-based entrepreneur and founder of the DryceNation community, began sharing this method which was immediately well received by the collector car industry. Videos on social media platforms further accelerated this process which was widely accepted by 2022.

Uses

Dry-ice blasting used to clean bakery equipment

Dry-ice blasting is utilized in many different types of industries. The unique properties of dry ice make it an ideal cleaning solution in many commercial and manufacturing settings.

Dry-ice blasting can clean numerous objects with differing, complex geometries at once, which is why cleaning plastic and rubber molds is a main application for the technology.[9] Dry ice replaces traditional cleaning methods that rely on manual scrubbing and the use of chemical cleaning agents. Dry-ice blasting cleans the molds in-place at operating temperature, which eliminates the need to shut production down for cleaning.[10]

Food processing industry

Dry-ice blasting can be used to clean food processing equipment.[11] As early as 2004, the UK Food Standards Agency documented the process to effectively decontaminate surfaces of Salmonella enteritidis, E. coli, and Listeria monocytogenes such that these microorganisms are not detectable using conventional microbiological methods.[12] "As a result of two outbreaks salmonellosis associated with the consumption of peanut butter and baby food in 2006–2007,[13][14] an effort was taken" by GMA members such as Cargill "to reassess industry practices for eliminating salmonella in low-moisture products" because "Salmonella outbreaks from low-moisture products are relatively rare but often impact large numbers of people." A document resulted from this effort describing a variety of waterless cleaning methods,[15] including dry-ice blasting.

It may also be used to clean some equipment without disassembly and without producing fire or electrical hazards. The EPA recommends dry-ice blasting as an alternative to many types of solvent-based cleaning.[16]

Disaster remediation

The cleaning process may be used for disaster remediation including mold, smoke, fire, and water damage.[17]

Historic item preservation

Due to the nonabrasive nature of dry ice and the absence of secondary waste from the cleaning process, dry-ice blasting is used in conservation and historical preservation projects. The cleaning process was used in the conservation of the USS Monitor[18] and the Philadelphia Museum of Art.[19]

Semiconductor fabrication

Due to the blast media sublimating without residue, dry-ice blasting finds use in the semiconductor, aerospace, and medical device manufacturing[20] industries.

Metalworking

The cleaning process is also used in other manufacturing settings, such as cleaning production equipment on automated weld lines,[21] cleaning composite tooling,[22] cleaning industrial printing presses,[23] cleaning molds and equipment used in foundries,[24] and to clean equipment and tooling in onshore and offshore environments in the oil and gas industry.

Dry-ice blasting is also used to deburr and deflash parts[25] and in surface preparation prior to painting.

Safety

Carbon dioxide is increasingly toxic starting at concentrations above 1%,[26] and can also displace oxygen resulting in asphyxia if equipment is not used in a ventilated area. In addition, because carbon dioxide is heavier than air, exhaust vents are required to be at or near ground level to efficiently remove the gas. At normal pressure dry ice is −78 °C (−108 °F) and must be handled with insulated gloves. Eye and ear protection are required to safely use dry-ice cleaning equipment.

History

It is believed the US Navy, in 1945, were the first to experiment with dry-ice blasting. They were interested in using the technology for various degreasing applications.[27]

In 1959, Unilever filed a patent for using dry-ice blasting (or water-ice blasting, or some combination of the two) as a method of removing meat from bone.[28]

In 1971, Chemotronics International Inc. filed a patent for using dry-ice blasting for the purposes of deburring and deflashing.[29]

A patent for dry-ice blasting was filed by Lockheed Martin in 1974.[30]

The first patents regarding development and design of modern-day single-hose dry-ice blasting technology were awarded to David Moore of Cold Jet, LLC in 1986, 1988 (U.S. patent 4,617,064 and U.S. patent 4,744,181).

See also

References

  1. ^ Máša, Vítězslav; Horňák, David; Petrilák, Dalimil (December 2021). "Industrial use of dry ice blasting in surface cleaning". Journal of Cleaner Production. 329: 129630. doi:10.1016/j.jclepro.2021.129630.
  2. ^ Kohli, Rajiv (2019). "Applications of Solid Carbon Dioxide (Dry Ice) Pellet Blasting for Removal of Surface Contaminants". Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques. pp. 117–169. doi:10.1016/B978-0-12-815577-6.00004-9. ISBN 978-0-12-815577-6.
  3. ^ Jet, Cold. "Dry Ice Blasting and Dry Ice Production Equipment by Cold Jet". coldjet.com. Retrieved 10 July 2018.
  4. ^ "Apex Dry Ice Blasting: Industrial Services – Akron, Ohio". apexdryiceblasting.com. Retrieved 11 July 2018.
  5. ^ How CO2 Blasting Works
  6. ^ "High Density CO2". Retrieved 18 July 2018.
  7. ^ "Moore, David E., US patents#4,617,064 and #4,744,181". Archived from the original on 28 April 2019. Retrieved 12 July 2007.
  8. ^ Jet, Cold. "Dry Ice Blasting and Dry Ice Production Equipment by Cold Jet". coldjet.com. Retrieved 10 July 2018.
  9. ^ Callari, Jim. "Dry-Ice Cleaning Pays Off Big For High-Tech Molder". ptonline.com. Retrieved 10 July 2018.
  10. ^ Jet, Cold. "Dry Ice Blasting and Dry Ice Production Equipment by Cold Jet". coldjet.com. Retrieved 10 July 2018.
  11. ^ "Case Study: Bakery Implements Dry Ice Cleaning". Food Manufacturing. 15 June 2017. Retrieved 22 December 2023.
  12. ^ Millar, Ian (19 September 2004). Cold Jet – A novel technique for cleaning and decontaminating food processing areas, equipment, carcasses and foods (PDF) (Technical Report to the Food Standards Agency). Stonehaven, Aberdeenshire, Scotland: Microchem Bioscience Limited.
  13. ^ "Multistate Outbreak of Salmonella Tennessee Infections Linked to Peanut Butter (FINAL UPDATE)". CDC. U.S. Department of Health & Human Services. 7 March 2007.
  14. ^ Sotir, Mark J.; Ewald, Gwen; Kimura, Akiko C.; Higa, Jeffrey I.; Sheth, Anandi; Troppy, Scott; Meyer, Stephanie; Hoekstra, R Michael; Austin, Jana; Archer, John; Spayne, Mary; Daly, Elizabeth R.; Griffin, Patricia M.; Salmonella Wandsworth Outbreak Investigation, Team (December 2009). "Outbreak of Salmonella Wandsworth and Typhimurium Infections in Infants and Toddlers Traced to a Commercial Vegetable-Coated Snack Food". Pediatric Infectious Disease Journal. 28 (12): 1041–1046. doi:10.1097/INF.0b013e3181af6218. PMID 19779390. Very minor formatting correction at "Outbreak of Salmonella Wandsworth and Typhimurium Infections in Infants and Toddlers Traced to a Commercial Vegetable-Coated Snack Food: ERRATUM". The Pediatric Infectious Disease Journal. 29 (3): 284. March 2010. doi:10.1097/01.inf.0000369241.58743.90. [T]he first subheading in the Results section was incorrect. The subheading should have appeared as Salmonella Wandsworth. (The original had "Salmonella wandsworth".)
  15. ^ Control of Salmonella in Low-Moisture Foods (PDF). Grocery Manufacturers Association. 4 February 2009.
  16. ^ 1,1,1-Trichloroethane (TCA) Hazards and Alternatives (PDF) (Technical Fact Sheet). United States Environmental Protection Agency. October 2000. EPA 905-F-00-026.
  17. ^ "Applications | Go Green – Dry Ice Blasting". gogreendryiceblasting.com. Archived from the original on 10 July 2018. Retrieved 10 July 2018.
  18. ^ Erickson, Mark St. John. "Speeding up the Monitor rescue". dailypress.com. Archived from the original on 11 July 2018. Retrieved 10 July 2018.
  19. ^ "Preserving a treasure chest". Philly.com. Retrieved 10 July 2018.
  20. ^ "Dry Ice Cleaning in Medical Device Manufacturing". Medical Design Technology. 11 May 2017. Retrieved 10 July 2018.
  21. ^ "Cleaning automated weld lines with dry ice". Retrieved 11 July 2018.
  22. ^ Sloan, Jeff. "Yes, you clean tooling board with dry ice". compositesworld.com. Retrieved 11 July 2018.
  23. ^ "Clean Printing Presses, Rollers, & Ink Trays with Dry Ice Blasting". continentalcarbonic.com. Retrieved 11 July 2018.
  24. ^ Jet, Cold. "Dry Ice Blasting and Dry Ice Production Equipment by Cold Jet". coldjet.com. Retrieved 11 July 2018.
  25. ^ "How dry ice can assist medical device manufacturers | Medical Design and Outsourcing". medicaldesignandoutsourcing.com. 3 April 2017. Retrieved 10 July 2018.
  26. ^ Friedman, Daniel. "Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures". InspectAPedia. Archived from the original on 28 September 2009. Retrieved 9 March 2011.
  27. ^ Foster, Robert W. "Carbon Dioxide (Dry-Ice) Blasting" (PDF). old.coldjet.com. Archived from the original (PDF) on 6 March 2007. Retrieved 24 September 2018.
  28. ^ Method of removing meat from bone, 21 January 1960, retrieved 24 September 2018
  29. ^ Method for the removal of unwanted portions of an article by spraying with high velocity dry ice particles, 12 July 1971, retrieved 24 September 2018
  30. ^ "Lockheed Martin Dry Ice Blasting Patent US4038786A". Retrieved 18 July 2018.

Read other articles:

World Cup final goalscorers The following is a list of goalscorers in the FIFA Women's World Cup finals. Only goals scored during regulation or extra time are included. Any goals scored during the penalty shoot-out are excluded. As of the 2023 final, twenty-one individuals have scored a total of twenty-four goals in all of finals history. Two players have scored multiple goals in the finals, while Carli Lloyd is the only women's player to score a hat trick in a final.[1] One player has d…

Amadeo IRaja SpanyolBerkuasa16 November 1870 – 11 Februari 1873PendahuluIsabella IIPenerusEstanislao Figueras (Presiden Republik) Alfonso XII (Raja Spanyol)Adipati AostaMasa jabatan30 Mei 1845 – 18 Januari 1890PendahuluVittorio EmanuelePenerusEmanuele FilibertoInformasi pribadiKelahiran(1845-05-30)30 Mei 1845Royal Palace, Torino, SardiniaKematian18 Januari 1890(1890-01-18) (umur 44)Royal Palace, Torino, ItaliaPemakamanBasilika Superga, ItaliaWangsaWangsa SavoyNama lengkapAmedeo Ferdinan…

Goeree-Overflakkee Goeree-Overflakkee adalah sebuah gemeente Belanda yang terletak di provinsi Holland Selatan. Pada tahun 2019 daerah ini memiliki penduduk sebesar 49.611 jiwa. Goeree-Overflakkee didirikan pada tahun 2013. Munisipalitas ini didirikan dari empat bekas munisipalitas Dirksland, Goedereede, Middelharnis dan Oostflakkee. Pranala luar (Belanda) Situs resmi Diarsipkan 2023-07-03 di Wayback Machine. Lihat pula Daftar munisipalitas Belanda lbsMunisipalitas di provinsi Holland SelatanAlb…

Goran Ljubojević Ljubojević playing for GenkInformasi pribadiTanggal lahir 4 Mei 1983 (umur 40)Tempat lahir Osijek, SFR YugoslaviaTinggi 1,89 m (6 ft 2+1⁄2 in)Posisi bermain ForwardInformasi klubKlub saat ini NK VinogradarNomor 9Karier junior OsijekKarier senior*Tahun Tim Tampil (Gol)2001–2004 Osijek 64 (23)2004–2006 Dinamo Zagre b 41 (13)2006 → St. Gallen (pinjaman) 17 (5)2006–2009 Genk 38 (12)2009–2010 NK Zagreb 12 (6)2010–2011 AIK 11 (2)2011–2012 Osij…

Peta infrastruktur dan tata guna lahan di Komune Bosmie-l'Aiguille.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiBosmie-l'Aiguille merupakan sebuah komune di departemen Haute-Vienne di Prancis. Lihat pula Komune di departemen Haute-Vienne Referensi INSEE lbsKomune di departemen Haute-Vienne Aixe-sur-Vienne Ambazac Arnac-la-Poste Augne Aureil Azat-le-Ris Ballede…

Not to be confused with 1934 United States Senate election in Vermont. 1934 United States Senate special election in Vermont ← 1932 January 16, 1934 (1934-01-16) 1938 →   Nominee Ernest Willard Gibson Harry Witters Party Republican Democratic Popular vote 28,436 20,382 Percentage 58.23% 41.74% U.S. senator before election Porter H. Dale Republican Elected U.S. Senator Ernest W. Gibson, Sr. Republican Elections in Vermont Federal government President…

James P. AllisonJames P. Allison in 2015Lahir07 Agustus 1948 (umur 75)TexasTempat tinggalHouston, TXKebangsaanAmericanAlmamaterUniversity of Texas, AustinDikenal atascancer immunology researchSuami/istriPadmanee Sharma, MD, PhD[1]PenghargaanBreakthrough Prize in Life Sciences (2014) Tang Prize (2014)[2] Louisa Gross Horwitz Prize (2014) Harvey Prize (2014)Gairdner Foundation International Award (2014) Lasker-DeBakey Clinical Medical Research Award (2015)[3] Wolf Priz…

Formula Satu musim 1952 Juara Dunia Pembalap: Alberto Ascari Sebelum: 1951 Sesudah: 1953 Balapan menurut negaraBalapan menurut musim Formula Satu musim 1952 merupakan musim Kejuaraan Dunia FIA Formula Satu yang ke-3, yang dimulai pada tanggal 18 Mei 1952, dan berakhir pada tanggal 7 September setelah delapan lomba. Di musim ini juga digelar beberapa balapan non-kejuaraan yang melengkapi lomba-lomba resmi.[1] Tampil sebagai juara dunia adalah Alberto Ascari, yang menjadi gelar juara dunia…

Pour les articles homonymes, voir Casas. Simon CasasSimon Casas en 2006.BiographieNaissance 2 septembre 1947 (76 ans)Nîmes, département du Gard FranceNom de naissance Bernard DombSurnom Simon CasasNationalité FrançaiseActivité Organisateur de corridas, apoderado, éleveur de taureaux de lidia, écrivainConjoint Marie Sara (années 1990)Autres informationsParti politique Rassemblement pour la RépubliqueMembre de Les Amis de Pablo Romero (d)modifier - modifier le code - modifier Wikidat…

Red-wine variety of grape Cabernet SauvignonGrape (Vitis)Cabernet Sauvignon grapes in Red Mountain, WashingtonColor of berry skinBlackAlso calledBouchet, Bouche, Petit-Bouchet, Petit-Cabernet, Petit-Vidure, Vidure, Sauvignon RougeNotable regionsBordeaux, Tuscany, Napa Valley, Paso Robles AVA, Sonoma County, Australia, Margaret River, South Africa, Friuli, British Columbia, CanadaNotable winesClassified Bordeaux estates, Californian cult winesIdeal soilGravelHazardsUnderripeness, powdery mildew, …

1982 single by Whitesnake This article is about the song by Whitesnake. For other uses, see Here I Go Again (disambiguation). Here I Go AgainSingle by Whitesnakefrom the album Saints & Sinners B-sideBloody LuxuryReleasedOctober 1982[1]Recorded1982StudioGoodnight L.A. Studios, Los Angeles, USGenreGlam metalblues rock[2]Length5:09LabelGeffenSongwriter(s) David Coverdale Bernie Marsden Producer(s)Martin BirchWhitesnake singles chronology Would I Lie to You (1981) Here I Go Again…

MambangLagu oleh Altimetdari album AirDirilis26 Februari 2018FormatUnduhan digitalMedia penyiaranDirekam2017GenreHip hopDurasi3:46 menitLabelWarner Music MalaysiaPenciptaAltimetAlif IlhamEmir HermonoProduserAltimetVideo musikMambang di YouTube Mambang adalah sebuah lagu yang direkamkan dan dipersembahkan oleh Altimet, dirilis pada 26 Februari 2018 sebagai singel pertama dari album keempatnya, Air (2018). Lagu tersebut menjadi viral di media sosial ketika lagu tersebut dikatakan ditujukan kepada …

Pour les articles homonymes, voir Saint-Sulpice. Saint-Sulpice-Laurière L'église du bourg (XIIIe siècle). Administration Pays France Région Nouvelle-Aquitaine Département Haute-Vienne Arrondissement Limoges Intercommunalité Communauté de communes Élan Limousin Avenir Nature Maire Mandat Jean-Michel Peyrot 2020-2026 Code postal 87370 Code commune 87181 Démographie Gentilé Saint-Sulpicien Saint-Sulpicienne[1] Populationmunicipale 811 hab. (2021 ) Densité 57 hab./km2 Géog…

Compianto sul Cristo morto, pietra calcare, 1554-64, chiesa di Saint Etienne a Saint-Mihiel Ligier Richier (Saint-Mihiel, 15 settembre 1500 – Ginevra, 8 agosto 1567) è stato uno scultore francese che adottò, su un fondamento di cultura gotica, i modi stilistici del primo Rinascimento. Al servizio della corte del duca di Lorena, realizzò numerose ed importanti opere che oggi si conservano soprattutto nei dipartimenti della Mosa e della Meurthe e Mosella, nella regione della Lorena. Indice 1 …

Ia Ora 'O Tahiti Nui (Tahitian)Pour que vive Tahiti Nui (Prancis)Halaman pertama lagu kebangsaan yang diterbitkan oleh Pemerintah Polinesia PrancisLagu kebangsaan Polinesia PrancisPenulis lirikMaeva Bougues, Irmine Tehei, Angèle Terorotua, Johanna Nouveau, Patrick Amaru, Louis Mamatui, Jean-Pierre et Pierre CélestinKomponisJean Paul BerlierPenggunaan10 Juni 1993Sampel audioVersi instrumental digitalberkasbantuan Sampel audioIa Ora 'O Tahiti Nuiberkasbantuan Ia Ora 'O Tahiti Nui (Hidup Tahi…

The Lamia karya Herbert James Draper, 1909 Dalam Mitologi Yunani, Lamia (Yunani: Λάμια) adalah iblis setengah ular yang suka memakan bayi dalam mitos Yunani Kuno.[1] [2][3] Lamia awalnya adalah seorang ratu Libya yang cantik tetapi dia dimurkai oleh Hera.[4] Dalam mitologi Menurut Diodoros Sikolos, Lamia terlahir sebagai perempuan yang cantik anak dari raja Belos dari Mesir dan sebagai cucu Poseidon dan Lybie. Setelah kematian ayahnya, dia menjadi ratu Li…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tariq Ramadan – berita · surat kabar · buku · cendekiawan · JSTORArtikel ini kemungkinan ditulis dari sudut pandang penggemar dan bukan sudut pandang netral. Mohon rapikan untuk menghasilkan standar kualita…

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное назва…

Questa voce o sezione sull'argomento attori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Adalberto Maria Merli in una scena di La prima notte di quiete (1972) Adalberto Maria Merli (Roma, 14 gennaio 1938[1]) è un attore e doppiatore italiano. Indice 1 Biografia 2 Filmografia 2.1 Attore 2.…

Offensive military flying mission A U.S. Navy A-7E Corsair II bombs the Hai Duong bridge in North Vietnam in 1972. Air interdiction (AI), also known as deep air support (DAS), is the use of preventive tactical bombing and strafing by combat aircraft against enemy targets that are not an immediate threat, to delay, disrupt or hinder later enemy engagement of friendly forces. It is a core capability of virtually all military air forces, and has been conducted in conflicts since World War I. Aircra…

Kembali kehalaman sebelumnya