God's algorithm

God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle,[1] but which can also be applied to other combinatorial puzzles and mathematical games.[2] It refers to any algorithm which produces a solution having the fewest possible moves. The allusion to the deity is based on the notion that an omniscient being would know an optimal step from any given configuration.

Scope

Definition

The notion applies to puzzles that can assume a finite number of "configurations", with a relatively small, well-defined arsenal of "moves" that may be applicable to configurations and then lead to a new configuration. Solving the puzzle means to reach a designated "final configuration", a singular configuration, or one of a collection of configurations. To solve the puzzle a sequence of moves is applied, starting from some arbitrary initial configuration.

Solution

An algorithm can be considered to solve such a puzzle if it takes as input an arbitrary initial configuration and produces as output a sequence of moves leading to a final configuration (if the puzzle is solvable from that initial configuration, otherwise it signals the impossibility of a solution). A solution is optimal if the sequence of moves is as short as possible. The highest value of this, among all initial configurations, is known as God's number,[3] or, more formally, the minimax value.[4] God's algorithm, then, for a given puzzle, is an algorithm that solves the puzzle and produces only optimal solutions.

Some writers, such as David Joyner, consider that for an algorithm to be properly referred to as "God's algorithm", it should also be practical, meaning that the algorithm does not require extraordinary amounts of memory or time. For example, using a giant lookup table indexed by initial configurations would allow solutions to be found very quickly, but would require an extraordinary amount of memory.[5]

Instead of asking for a full solution, one can equivalently ask for a single move from an initial but not final configuration, where the move is the first of some optimal solution. An algorithm for the single-move version of the problem can be turned into an algorithm for the original problem by invoking it repeatedly while applying each move reported to the present configuration, until a final one is reached; conversely, any algorithm for the original problem can be turned into an algorithm for the single-move version by truncating its output to its first move.

Examples

Well-known puzzles fitting this description are mechanical puzzles such as Rubik's Cube, the Tower of Hanoi, and the 15 puzzle. The one-person game of peg solitaire is also covered, as well as many logic puzzles, such as the missionaries and cannibals problem. These have in common that they can be modeled mathematically as a directed graph, in which the configurations are the vertices, and the moves the arcs.

Mechanical puzzles

n-Puzzles

The Fifteen puzzle can be solved in 80 single-tile moves[6] or 43 multi-tile moves[7] in the worst case. For its generalization the n-puzzle, the problem of finding an optimal solution is NP-hard,[8] so it is not known whether there is a practical God's algorithm.

Towers of Hanoi

For the Towers of Hanoi puzzle, a God's algorithm is known for any given number of disks. The number of moves increases exponentially with the number of disks ().[9]

Rubik's Cube

A scrambled Rubik's Cube

An algorithm to determine the minimum number of moves to solve Rubik's Cube was published in 1997 by Richard Korf.[10] While it had been known since 1995 that 20 was a lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved in 2010 that no configuration requires more than 20 moves.[11] Thus, 20 is a sharp upper bound on the length of optimal solutions. Mathematician David Singmaster had "rashly conjectured" this number to be 20 in 1980.[4]

Unsolved games

Some well known games with a very limited set of simple well-defined rules and moves have nevertheless never had their God's algorithm for a winning strategy determined. Examples are the board games chess and Go.[12] Both these games have a rapidly increasing number of positions with each move. The total number of all possible positions, approximately 5×1044[13] for chess and 10180 (on a 19×19 board) for Go,[14] is much too large to allow a brute force solution with current computing technology (compare the now solved, with great difficulty, Rubik's Cube at only about 4.3×1019 positions[15]). Consequently, a brute force determination of God's algorithm for these games is not possible. While chess computers have been built that are capable of beating even the best human players, they do not calculate the game all the way to the end. Deep Blue, for instance, searched only 11 moves ahead (counting a move by each player as two moves), reducing the search space to only 1017.[16] After this, it assessed each position for advantage according to rules derived from human play and experience.

Even this strategy is not possible with Go. Besides having hugely more positions to evaluate, no one so far has successfully constructed a set of simple rules for evaluating the strength of a Go position as has been done for chess, though neural networks trained through reinforcement learning can provide evaluations of a position that exceed human ability.[17] Evaluation algorithms are prone to make elementary mistakes[18] so even for a limited look ahead with the goal limited to finding the strongest interim position, a God's algorithm has not been possible for Go.

On the other hand, draughts (checkers) has long been suspected of being "played out" by its expert practitioners.[19] In 2007 Schaeffer et al. proved this to be so by calculating a database of all positions with ten or fewer pieces, providing a God's algorithm for all end games of draughts which was used to prove that all perfectly played games of draughts end in a draw.[20] However, draughts with only 5×1020 positions[21] and even fewer, 3.9×1013, in the database,[22] is a much easier problem to solve –of the same order as Rubik's cube.

The magnitude of the set of positions of a puzzle does not entirely determine whether a God's algorithm is possible. The already solved Tower of Hanoi puzzle can have an arbitrary number of pieces, and the number of positions increases exponentially as . Nevertheless, the solution algorithm is applicable to any size problem, with a running time scaling as .[23]

See also

Notes

  1. ^ Paul Anthony Jones, Jedburgh Justice and Kentish Fire: The Origins of English in Ten Phrases and Expressions, Hachette UK, 2014 ISBN 1472116224.
  2. ^ See e.g. Rubik's Cubic Compendium by Ernö Rubik, Tamás Varga, Gerzson Kéri, György Marx, and Tamás Vekerdy (1987, Oxford University Press, ISBN 0-19-853202-4), p. 207: "...the Pyraminx is much simpler than the Magic Cube... Nicholas Hammond has shown that God's Algorithm is at most 21 moves (including the four trivial vertex moves). [More recently, three people have found God's Algorithm. The maximal number of moves is 15 (including the four vertex moves).]"
  3. ^ Jonathan Fildes (August 11, 2010). "Rubik's Cube quest for speedy solution comes to an end". BBC News.
  4. ^ a b Singmaster, p. 311, 1980
  5. ^ Joyner, page 149
  6. ^ A. Brüngger, A. Marzetta, K. Fukuda and J. Nievergelt, The parallel search bench ZRAM and its applications, Annals of Operations Research 90 (1999), pp. 45–63.
  7. ^ Norskog, Bruce; Davidson, Morley (December 8, 2010). "The Fifteen Puzzle can be solved in 43 moves". Domain of the Cube Forum. Retrieved March 15, 2022.
  8. ^ Daniel Ratner, Manfred K. Warmuth (1986). "Finding a shortest solution for the N × N extension of the 15-puzzle is intractable". in Proceedings AAAI-86. National Conference on Artificial Intelligence, 1986. pp. 168–172.
  9. ^ Rueda, Carlos (August 2000). "An optimal solution to the Towers of Hanoi Puzzle". Universidad Autónoma de Manizales [Autonomous University of Manizales]. Manizales, Colombia. Archived from the original on 2004-06-05. Retrieved March 15, 2022.
  10. ^ Richard E. Korf, "Finding optimal solutions to Rubik's Cube using pattern databases", Proc. Natl. Conf. on Artificial Intelligence (AAAI-97), Providence, Rhode Island, Jul 1997, pp. 700–705.
  11. ^ Rokicki, Tomas; Kociemba, Herbert; Davidson, Morley; Dethridge, John (2010). "God's Number is 20". Cube20.org. Retrieved March 15, 2022.
  12. ^ Rothenberg, p. 11
  13. ^ John Tromp. "Chess Position Ranking". GitHub.
  14. ^ Baum, p. 199
  15. ^ Singmaster, 1981
  16. ^ Baum, p. 188
  17. ^
    • Baum, p. 197
    • Mohammadian, p. 11
  18. ^ Baum, p.197
  19. ^ Fraser & Hannah, p. 197
  20. ^ Moore & Mertens, chapter 1.3, "Playing chess with God"
  21. ^ Schaeffer et al., p. 1518
  22. ^ Moore & Mertens, "Notes" to chapter 1
  23. ^ Rueda

References

  • Baum, Eric B., What is Thought?, MIT Press, 2004 ISBN 0262025485.
  • Davis, Darryl N.; Chalabi, T.; Berbank-Green, B., "Artificial-life, agents and Go", in Mohammadian, Masoud, New Frontiers in Computational Intelligence and its Applications, pp. 125–139, IOS Press, 2000 ISBN 9051994761.
  • Fraser, Rober (ed); Hannah, W. (ed), The Draught Players' Weekly Magazine, vol. 2, Glasgow: J H Berry, 1885.
  • Joyner, David (2002). Adventures in Group Theory. Johns Hopkins University Press. ISBN 0-8018-6947-1.
  • Moore, Cristopher; Mertens, Stephan, The Nature of Computation, Oxford University Press, 2011 ISBN 0191620807.
  • Rothenberg, Gadi, Catalysis, God's Algorithm, and the Green Demon, Amsterdam University Press, 2009 ISBN 9056295896.
  • Schaeffer, Jonathan; Burch, Neil; Björnsson, Yngvi; Kishimoto, Akihiro; Müller, Martin; Lake, Robert; Lu, Paul; Sutphen, Steve (14 September 2007). "Checkers Is Solved" (PDF). Science. 317 (5844): 1518–1522. Bibcode:2007Sci...317.1518S. doi:10.1126/science.1144079. ISSN 0036-8075. PMID 17641166.
  • Singmaster, David, Notes on Rubik's Magic Cube, Penguin, 1981 ISBN 0-907395-00-7.
  • Singmaster, David, "The educational value of the Hungarian 'Magic Cube'", Proceedings of the Fourth International Congress on Mathematical Education, held in Berkeley, California, 10–16 August 1980, pp. 307–312, Birkhauser Boston Inc, 1983 ISBN 978-0-8176-3082-9.


Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Soto Petanahan – berita · surat kabar · buku · cendekiawan · JSTOR Soto Petanahan merupakan soto khas Kabupaten Kebumen, Jawa Tengah, Indonesia. Soto ini berasal dari wilayah pesisir Kabupaten Kebumen yaitu…

Artikel ini membahas mengenai bangunan, struktur, infrastruktur, atau kawasan terencana yang sedang dibangun atau akan segera selesai. Informasi di halaman ini bisa berubah setiap saat (tidak jarang perubahan yang besar) seiring dengan penyelesaiannya.Untuk tempat lain yang bernama sama, lihat Gado Bangkong. Untuk kegunaan lain, lihat Gadobangkong. Halte Gadobangkong B11C11 Halte Gadobangkong, 2022LokasiGadobangkong, Ngamprah, Bandung Barat, Jawa Barat 40722IndonesiaKoordinat6°52′3″S 107°3…

László IVSegel László si CumanRaja Hungaria dan KroasiaBerkuasa1272–1290Hungariasetelah 6 Agustus 1272PendahuluIstván VPenerusAndrás IIIInformasi pribadiKelahiran(1262-08-05)5 Agustus 1262Kematian10 Juli 1290(1290-07-10) (umur 27)Körösszeg (Cheresig, Rumania)PemakamanKatedral Csanád (Cenad, Rumania)DinastiÁrpádAyahIstván V dari HungariaIbuErzsébet dari CumanPasanganElisabeth dari Sisilia László si Cuman (Hongaria: IV. (Kun) Lászlócode: hu is deprecated , Kroasia: Ladislav…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber:&#…

Matatias pada Promptuarii Iconum Insigniorum karya Guillaume Rouillé Imam Matatias bin Yohanes (Ibrani: מַתִּתְיָהוּ הַכֹּהֵן בֶּן יוֹחָנָן, Matiṯyāhu haKohēn ben Yōḥānān; wafat tahun 165 SM)[1] adalah seorang Kohen (imam Yahudi) yang berperan dalam Pemberontakan Makabe yang berlandaskan agama melawan Kekaisaran Seleukia Yunani yang tercatat dalam Kitab Makabe. Matatias diberikan peran sentral dalam kisah Hanukkah dan, sebagai hasilnya, disebutka…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The 'W' Files – news · newspapers · books · scholar · JSTOR (December 2007) (Learn how and when to remove this template message) Hong Kong TV series or program The 'W' FilesDVD coverGenrePeriod dramaActionScience fantasyAdventureMysteryCreated byNelson CheungWong …

Pokémon: Lucario and the Mystery of MewSutradaraKunihiko Yuyama D. C. DouglasProduserJim MaloneDitulis olehHideki SonodaPemeranVeronica Taylor Ikue Ohtani Rachael Lillis Eric Stuart Amy Birnbaum Maddie Blaustein Sean Schemmel Rebecca Soler Bella HudsonDistributorToho (Japan) VIZ Media (U.S., DVD only) Magna Pacific (Australia)Tanggal rilis 17 Juli 2005 (2005-07-17) Durasi100 min.NegaraJapanAmerika SerikatKanadaBahasaEnglish JapanesePrekuelDestiny DeoxysSekuelPokémon Ranger and the Temple …

الرجال لا يتزوجون الجميلات الرجال لا يتزوجون الجميلات  الصنف دراما، رومانسي تاريخ الصدور 2 يونيو 1965 مدة العرض 90 دقيقة البلد  مصر اللغة الأصلية العربية الطاقم المخرج أحمد فاروق الإنتاج الشركة العامة للإنتاج السينمائي العربي قصة هيلين خياط سيناريو وحوار أحمد عبد الوهاب …

Community in San Diego County, California 32°43′47.02″N 117°15′09.21″W / 32.7297278°N 117.2525583°W / 32.7297278; -117.2525583 A swimming beach at the base of the Sunset Cliffs Sunset over the Pacific Ocean, as seen from Sunset Cliffs Sunset Cliffs is an affluent coastal community in the Point Loma community of San Diego, California. It is bordered by the Pacific Ocean on the west, Ocean Beach on the north, Catalina Blvd. and Santa Barbara St. on the east, and…

Invasi Koloni TanjungBagian dari the Perang Revolusi PrancisDaerah Semenanjung CapeTanggal10 June–15 September 1795LokasiKoloni Tanjung Belanda, Afrika SelatanHasil Britania Raya menangPihak terlibat  Republik Batavia  Britania RayaTokoh dan pemimpin Abraham Josias Sluysken George Elphinstone James CraigKekuatan 3.600 1.8005 SOL2 kapal sloop Invasi Koloni Tanjung adalah ekspedisi militer Inggris yang diluncurkan pada 1795 guna melawan Koloni Tanjung Belanda di Tanjung Harapan, ujung …

Cet article est une ébauche concernant un sculpteur italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tiziano AspettiNaissance 1559PadoueDécès 1606PiseActivité SculpteurMaître Girolamo Campagnamodifier - modifier le code - modifier Wikidata Tiziano Aspetti (né v. 1557-1559 à Padoue et mort à Pise en 1606) est un sculpteur italien baroque qui a été actif à Venise à la fin du XVIe et au début du XV…

Novli Wanda Ade Putra Ketua Dewan Perwakilan Rakyat Daerah Kabupaten Rokan Hulu ke-6Masa jabatan2019–2024 Informasi pribadiLahir22 November 1989 (umur 34)Pasir Pengaraian, Rokan Hulu, RiauKebangsaanIndonesiaPartai politikGerindraSuami/istriHelna Manda HayatiAlma materUniversitas Islam Indonesia Universitas RiauPekerjaanPolitisiSunting kotak info • L • B Novli Wanda Ade Putra[1][2], ST,. M.Si gelar Datuk Setia Mufakat Panglimo Mudo[3] (lahir 22 Nov…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jiří PleskotLahir(1922-05-03)3 Mei 1922Milostín, Cekoslowakia (kini Republik Ceko)Meninggal1 Desember 1997(1997-12-01) (umur 75)Praha, Republik CekoPekerjaanPemeranTahun aktif1958 – 1990 Jiří Pleskot (3 Mei 1922 – 1 Desem…

Artikel ini bukan mengenai Universitas Negeri Makassar (disingkat sebagai UNM). artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Universitas Handayani MakassarLogo Universitas Handayani Makassar (se…

Stadio Tomás Adolfo DucóEstadio Tomás Adolfo DucóEl Palacio Informazioni generaliStato Argentina UbicazioneAv. Amancio Alcorta 2570, Parque Patricios, Buenos Aires Inaugurazione11 novembre 1949 ProprietarioClub Atlético Huracán Informazioni tecnichePosti a sedere48 314 Coperturano Pista d’atleticano Mat. del terrenoerba Dim. del terreno105 × 70 m Uso e beneficiariCalcio Huracán Mappa di localizzazione Modifica dati su Wikidata · ManualeCoordinate: 34°38′36.…

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍總…

Chemical compound BIM-018Legal statusLegal status CA: Schedule II Identifiers IUPAC name 2-(naphthalene-1-carbonyl)-1-pentyl-1H-1,3-benzodiazole CAS Number2316839-70-8 YPubChem CID124519300ChemSpider29763750UNII2FNW3VE8P9Chemical and physical dataFormulaC23H22N2OMolar mass342.442 g·mol−13D model (JSmol)Interactive image SMILES CCCCCn1c2ccccc2nc1C(=O)c1cccc2c1cccc2 InChI InChI=1S/C23H22N2O/c1-2-3-8-16-25-21-15-7-6-14-20(21)24-23(25)22(26)19-13-9-11-17-10-4-5-12-18(17)19/h4-7,9-1…

Study of cooperation of brain regions to process information Functional integration is the study of how brain regions work together to process information and effect responses. Though functional integration frequently relies on anatomic knowledge of the connections between brain areas, the emphasis is on how large clusters of neurons – numbering in the thousands or millions – fire together under various stimuli. The large datasets required for such a whole-scale picture of brain function hav…

Pour les articles homonymes, voir Grande région. Grande Région La Grande Région apparait en bleu. Administration Pays AllemagneLand de Sarre, Land de Rhénanie-Palatinat Pays BelgiqueRégion wallonne, Communauté française de Belgique, Communauté germanophone de Belgique Pays FranceGrand Est (ex-région Lorraine), Département de Meurthe-et-Moselle, Département de la Meuse, Département de la Moselle, Département des Vosges Pays Luxembourg Forme actuelle Groupement européen de coopérati…

This article is about the Indian ISRO scramjet. For the U.S. vehicle qualification class, see Advanced Technology Vehicles Manufacturing Loan Program. For the X-37 ATV, see Boeing X-37C. For the X-33 ATV, see Lockheed Martin X-33A. Advanced Technology VehicleFunctionExperimental scramjet testbedManufacturerISROCountry of originIndiaSizeHeight9.10 m (29.9 ft)Diameter0.56 m (1.8 ft)Mass3,000 kg (6,600 lb)[1]Stages2Associated rocketsFamilyRohini-560Launch histo…

Kembali kehalaman sebelumnya