Levi-Civita connection

In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves the (pseudo-)Riemannian metric and is torsion-free.

The fundamental theorem of Riemannian geometry states that there is a unique connection that satisfies these properties.

In the theory of Riemannian and pseudo-Riemannian manifolds the term covariant derivative is often used for the Levi-Civita connection. The components (structure coefficients) of this connection with respect to a system of local coordinates are called Christoffel symbols.

History

The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel. Levi-Civita,[1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols[2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.[3]

In 1869, Christoffel discovered that the components of the intrinsic derivative of a vector field, upon changing the coordinate system, transform as the components of a contravariant vector. This discovery was the real beginning of tensor analysis.

In 1906, L. E. J. Brouwer was the first mathematician to consider the parallel transport of a vector for the case of a space of constant curvature.[4][5]

In 1917, Levi-Civita pointed out its importance for the case of a hypersurface immersed in a Euclidean space, i.e., for the case of a Riemannian manifold embedded in a "larger" ambient space.[1] He interpreted the intrinsic derivative in the case of an embedded surface as the tangential component of the usual derivative in the ambient affine space. The Levi-Civita notions of intrinsic derivative and parallel displacement of a vector along a curve make sense on an abstract Riemannian manifold, even though the original motivation relied on a specific embedding

In 1918, independently of Levi-Civita, Jan Arnoldus Schouten obtained analogous results.[6] In the same year, Hermann Weyl generalized Levi-Civita's results.[7][8]

Notation

The metric g can take up to two vectors or vector fields X, Y as arguments. In the former case the output is a number, the (pseudo-)inner product of X and Y. In the latter case, the inner product of Xp, Yp is taken at all points p on the manifold so that g(X, Y) defines a smooth function on M. Vector fields act (by definition) as differential operators on smooth functions. In local coordinates , the action reads

where Einstein's summation convention is used.

Formal definition

An affine connection is called a Levi-Civita connection if

  1. it preserves the metric, i.e., .
  2. it is torsion-free, i.e., for any vector fields and we have , where is the Lie bracket of the vector fields and .

Condition 1 above is sometimes referred to as compatibility with the metric, and condition 2 is sometimes called symmetry, cf. Do Carmo's text.[9]

Fundamental theorem of (pseudo-)Riemannian geometry

Theorem Every pseudo-Riemannian manifold has a unique Levi Civita connection .

Proof:[10][11] To prove uniqueness, unravel the definition of the action of a connection on tensors to find

.

Hence one can write the condition that preserves the metric as

.

By the symmetry of ,

.

By torsion-freeness, the right hand side is therefore equal to

.

Thus, the Koszul formula

holds. Hence, if a Levi-Civita connection exists, it must be unique, because is arbitrary, is non degenerate, and the right hand side does not depend on .

To prove existence, note that for given vector field and , the right hand side of the Koszul expression is linear over smooth functions in the vector field , not just real-linear. Hence by the non degeneracy of , the right hand side uniquely defines some new vector field, which is suggestively denoted as in the left hand side. By substituting the Koszul formula, one now checks that for all vector fields and all functions ,

Hence the Koszul expression does, in fact, define a connection, and this connection is compatible with the metric and is torsion free, i.e. is a Levi-Civita connection.

With minor variation, the same proof shows that there is a unique connection that is compatible with the metric and has prescribed torsion.

Christoffel symbols

Let be an affine connection on the tangent bundle. Choose local coordinates with coordinate basis vector fields and write for . The Christoffel symbols of with respect to these coordinates are defined as

The Christoffel symbols conversely define the connection on the coordinate neighbourhood because

that is,

An affine connection is compatible with a metric iff

i.e., if and only if

An affine connection is torsion free iff

i.e., if and only if

is symmetric in its lower two indices.

As one checks by taking for , coordinate vector fields (or computes directly), the Koszul expression of the Levi-Civita connection derived above is equivalent to a definition of the Christoffel symbols in terms of the metric as

where as usual are the coefficients of the dual metric tensor, i.e. the entries of the inverse of the matrix .

Derivative along curve

The Levi-Civita connection (like any affine connection) also defines a derivative along curves, sometimes denoted by D.

Given a smooth curve γ on (M, g) and a vector field V along γ its derivative is defined by

Formally, D is the pullback connection γ*∇ on the pullback bundle γ*TM.

In particular, is a vector field along the curve γ itself. If vanishes, the curve is called a geodesic of the covariant derivative. Formally, the condition can be restated as the vanishing of the pullback connection applied to :

If the covariant derivative is the Levi-Civita connection of a certain metric, then the geodesics for the connection are precisely those geodesics of the metric that are parametrised proportionally to their arc length.

Parallel transport

In general, parallel transport along a curve with respect to a connection defines isomorphisms between the tangent spaces at the points of the curve. If the connection is a Levi-Civita connection, then these isomorphisms are orthogonal – that is, they preserve the inner products on the various tangent spaces.

The images below show parallel transport induced by the Levi-Civita connection associated to two different Riemannian metrics on the punctured plane . The curve the parallel transport is done along is the unit circle. In polar coordinates, the metric on the left is the standard Euclidean metric , while the metric on the right is . The first metric extends to the entire plane, but the second metric has a singularity at the origin:

.
Parallel transports on the punctured plane under Levi-Civita connections
Cartesian transport
This transport is given by the metric .
Polar transport
This transport is given by the metric .

Warning: This is parallel transport on the punctured plane along the unit circle, not parallel transport on the unit circle. Indeed, in the first image, the vectors fall outside of the tangent space to the unit circle.

Example: the unit sphere in R3

Let ⟨ , ⟩ be the usual scalar product on R3. Let S2 be the unit sphere in R3. The tangent space to S2 at a point m is naturally identified with the vector subspace of R3 consisting of all vectors orthogonal to m. It follows that a vector field Y on S2 can be seen as a map Y : S2R3, which satisfies

Denote as dmY the differential of the map Y at the point m. Then we have:

Lemma — The formula defines an affine connection on S2 with vanishing torsion.

Proof

It is straightforward to prove that satisfies the Leibniz identity and is C(S2) linear in the first variable. It is also a straightforward computation to show that this connection is torsion free. So all that needs to be proved here is that the formula above produces a vector field tangent to S2. That is, we need to prove that for all m in S2 Consider the map f that sends every m in S2 to Y(m), m, which is always 0. The map f is constant, hence its differential vanishes. In particular The equation (1) above follows. Q.E.D.

In fact, this connection is the Levi-Civita connection for the metric on S2 inherited from R3. Indeed, one can check that this connection preserves the metric.

Behaviour under conformal rescaling

If the metric in a conformal class is replaced by the conformally rescaled metric of the same class , then the Levi-Civita connection transforms according to the rule[12] where is the gradient vector field of i.e. the vector field -dual to , in local coordinates given by . Indeed, it is trivial to verify that is torsion-free. To verify metricity, assume that is constant. In that case,

As an application, consider again the unit sphere, but this time under stereographic projection, so that the metric (in complex Fubini–Study coordinates ) is: This exhibits the metric of the sphere as conformally flat, with the Euclidean metric , with . We have , and so With the Euclidean gradient , we have These relations, together with their complex conjugates, define the Christoffel symbols for the two-sphere.

See also

Notes

  1. ^ a b Levi-Civita, Tullio (1917). "Nozione di parallelismo in una varietà qualunque" [The notion of parallelism on any manifold]. Rendiconti del Circolo Matematico di Palermo (in Italian). 42: 173–205. doi:10.1007/BF03014898. JFM 46.1125.02. S2CID 122088291.
  2. ^ Christoffel, Elwin B. (1869). "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades". Journal für die reine und angewandte Mathematik. 1869 (70): 46–70. doi:10.1515/crll.1869.70.46. S2CID 122999847.
  3. ^ See Spivak, Michael (1999). A Comprehensive introduction to differential geometry (Volume II). Publish or Perish Press. p. 238. ISBN 0-914098-71-3.
  4. ^ Brouwer, L. E. J. (1906). "Het krachtveld der niet-Euclidische, negatief gekromde ruimten". Koninklijke Akademie van Wetenschappen. Verslagen. 15: 75–94.
  5. ^ Brouwer, L. E. J. (1906). "The force field of the non-Euclidean spaces with negative curvature". Koninklijke Akademie van Wetenschappen. Proceedings. 9: 116–133. Bibcode:1906KNAB....9..116B.
  6. ^ Schouten, Jan Arnoldus (1918). "Die direkte Analysis zur neueren Relativiteitstheorie". Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. 12 (6): 95.
  7. ^ Weyl, Hermann (1918). "Gravitation und Elektrizitat". Sitzungsberichte Berliner Akademie: 465–480.
  8. ^ Weyl, Hermann (1918). "Reine Infinitesimal geometrie". Mathematische Zeitschrift. 2 (3–4): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/bf01199420. S2CID 186232500.
  9. ^ Carmo, Manfredo Perdigão do (1992). Riemannian geometry. Francis J. Flaherty. Boston: Birkhäuser. ISBN 0-8176-3490-8. OCLC 24667701.
  10. ^ John M Lee (2018). Introduction to Riemannian manifolds. Springer-Verlag. p. 22.
  11. ^ Barrett O'Neill (1983). Semi-Riemannian geometry with Applications to relativity. Academic Press. p. 61.
  12. ^ Arthur Besse (1987). Einstein manifolds. Springer. p. 58.

References

Read other articles:

Pour les articles homonymes, voir TVR. Societatea Română de Televiziune (Televiziunea Română) Ancien nom Televiziunea Română Liberă (TVRL) (1989 - 1990) Création 31 décembre 1956 Dates clés 1990 : détachement de la Radioteleviziunea Românǎ à la suite du changement de régime politique de la Roumanie Slogan Imaginea timpului tău (L'image de ton temps) Siège social Bucarest Roumanie Direction Dan-Cristian Turturică (président-directeur général depuis Novembre 2021) Ac…

Part of a series on the History of Khyber Pakhtunkhwa Ancient Early Harappan Periodc. 3300 – c. 2600 BCE Mature Harappan Periodc. 2600 – c. 1900 BCE Late Harappan Periodc. 1900 – c. 1500 BCE Kamboja Kingdom & Swat culture(Vedic Civilization)c. 1500 – c. 500 BCE Arachosia & Gandhara(Achaemenid Empire)c. 518 – c. 330 BCE Arachosia & Paropamisadae(Macedonian Empire)c. 323 – c. 312 BCE Mauryan Empirec. 322 – c. 200 BCE Greco-Bactrian Kingdomc. 190 – c. 140 BCE Indo-Greek …

Untuk kegunaan lain, lihat Anak Pantai. Anak PantaiSutradaraRuli WanisarProduserFerry FernandezDitulis olehJanna EnjehCeritaTobali TeamPemeran Naufal Ho Basmalah Gralind Ali Fikry Farras Fatik Penata musikMathews N. SiahaanSinematograferYagiPenyuntingEFG TeamPerusahaanproduksiTobali Putra ProductionDistributorGenflixTanggal rilis06 Agustus 2020Durasi90 menitNegaraIndonesiaBahasaBahasa Indonesia Anak Pantai adalah film Indonesia tahun 2020 yang merupakan film orisinil Genflix dan diproduksi…

Eretan KulonDesaNegara IndonesiaProvinsiJawa BaratKabupatenIndramayuKecamatanKandanghaurKode Kemendagri32.12.21.2012 Luas5,04Jumlah penduduk9.856Kepadatan1.956 Senja di Eretan Eretan Kulon adalah desa di kecamatan Kandanghaur, Indramayu, Jawa Barat, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, dan Pulau tahun 2021 (Indonesia) Peraturan Menteri Dalam Negeri Nomor 72…

I Nengah Tamba Bupati Jembrana ke-14PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurWayan KosterWakilI Gede Ngurah Patriana Krisna PendahuluI Putu ArthaPenggantiPetahana Informasi pribadiLahir22 Maret 1964 (umur 60)Jembrana, Bali, IndonesiaKebangsaanIndonesiaPartai politikPNBK (2004-2006) Demokrat (2006-sekarang)Suami/istriGusti Ayu Ketut CandrawatiAnak3Alma materUniversitas UdayanaPekerjaanDirektur, PolitikusSunting kotak info • L • B I Nengah Tamba,…

Pusat Misi Pemeliharaan PerdamaianTentara Nasional IndonesiaBerkas:Logo PMPP TNI.pngDibentuk29 Januari 2007Negara IndonesiaCabang Tentara Nasional IndonesiaTipe unitBadan Pelaksana PusatBagian dariTentara Nasional IndonesiaJulukanPMPP TNIBaret BIRU MUDA Situs webwww.pmpp-tni.mil.idTokohKomandanLaksamana Muda TNI Retiono Kunto Haridiningtias, S.E.Wakil KomandanBrigadir Jenderal TNI Dody Muhtar TaufikInspekturKolonel Laut (P) Heru Supriyanto, M.M., M.Mar., CFrA Pusat Misi Pemelihara…

Genus of flowering plants in the nightshade family Solanaceae For the agricultural product, see Tobacco. Nicotiana Nicotiana tabacum Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Solanales Family: Solanaceae Tribe: Nicotianeae Genus: NicotianaL. Type species Nicotiana tabacumL. Species See text Synonyms[1] Amphipleis Raf. Blenocoes Raf. Dittostigma Phil. Eucapnia Raf. Langsdorfia Raf. Lehmannia Spreng. Merinthe S…

City in Quebec, CanadaGaspéCityGaspéNorth of Gaspé BayLocation within La Côte-de-Gaspé RCMGaspéLocation in eastern QuebecCoordinates: 48°50′N 64°29′W / 48.833°N 64.483°W / 48.833; -64.483[1]CountryCanadaProvinceQuebecRegionGaspésie–Îles-de-la-MadeleineRCMLa Côte-de-GaspéConstitutedJanuary 1, 1971Government[2] • MayorDaniel Côté • Federal ridingGaspésie—Îles-de-la-Madeleine • Prov. ridingGaspéAr…

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nickelodeon Plus – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this template message) Television channel Nickelodeon PlusCountryGreeceBroadcast areaCentral MacedoniaHeadquartersThessaloniki, GreeceProgrammingLanguage(s)GreekPicture format…

Brazilian footballer In this Portuguese name, the first or maternal family name is Treichel and the second or paternal family name is Moraes da Silva. Tiago Treichel Personal informationFull name Tiago Treichel Moraes da SilvaDate of birth (1984-09-08) 8 September 1984 (age 39)Place of birth Pelotas, BrazilHeight 1.78 m (5 ft 10 in)Position(s) Attacking midfielderYouth career PelotasSenior career*Years Team Apps (Gls)2003–2004 Pelotas 0 (0)2005 Sapiranga 0 (0)2005 Novo …

2005 greatest hits album by Woody GuthrieVery Best of Woody GuthrieGreatest hits album by Woody GuthrieReleasedMay 31, 2005RecordedApril 16, 1944 – March 25, 1945GenreFolk rockLabelPurple Pyramid (Cleopatra) The Very Best of Woody Guthrie is a compilation album by American singer-songwriter and folk musician Woody Guthrie. It was released in May 2005 by Purple Pyramid, a sub-label of Cleopatra Records. The album contains 13 songs recorded between 1944 and 1945,[1] plus a remix …

Pour les articles homonymes, voir Divine. Divine Sébastien Tellier au Concours Eurovision de la chanson 2008 à Belgrade Chanson de Sébastien Tellier au Concours Eurovision de la chanson 2008 Sortie 2008 Langue Anglais, français Auteur Amandine de la Richardière Auteur-compositeur Sébastien Tellier Chansons représentant la France au Concours Eurovision de la chanson L'Amour à la française(2007) Et s'il fallait le faire(2009)modifier Divine Single de Sébastien Tellierextrait de…

French businessman Thierry Magon de La VillehuchetBorn23 April 1943[1][2]Saint-Malo, FranceDied22 December 2008(2008-12-22) (aged 65)New York City, New York, United StatesCause of deathSuicideOccupationInvestment managerKnown forFounder of Access International AdvisorsRelativesBertrand Magon de La Villehuchet (brother) René-Thierry Magon de la Villehuchet (23 April 1943 – 22 December 2008) was a French aristocrat, money manager, and businessman. He was one of th…

Yazīd III le Réducteur Fonctions Calife 16 avril 744 – 3 octobre 744(5 mois et 17 jours) Prédécesseur Al-Walīd II Successeur ʾIbrāhīm Biographie Nom de naissance Yazīd ibn Al-Walīd Date de naissance 705 Date de décès 3 octobre 744 Nationalité Omeyyade Père Al-Walīd Ier Religion Islam Résidence Damas Califes modifier  Yazīd III le Réducteur ou ʾAbū Ḫālid An-Nāqiṣ Yazīd ibn Al-Walīd (en arabe : أبو خالد الناقص يزيد بن الولي…

Pour les articles homonymes, voir mozarabe. Cet article est une ébauche concernant une langue, al-Andalus et l’Espagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Mozarabe Extinction XIIIe siècle Pays Espagne, Portugal ,Gibraltar Typologie SVO Classification par famille - langues indo-européennes - langues italiques - langues latino-falisques - latin - latin vulgaire - langues romanes - langues romane…

Amrita SinghSingh pada 2011Lahir09 Februari 1958 (umur 66)PekerjaanAktris film dan televisiTahun aktif1983–sekarangSuami/istriSaif Ali Khan(m. 1991; bercerai 2004)AnakSara Ali Khan Ibrahim Ali KhanOrang tuaShivinder Singh Virk (bapak)Rukhsana Sultana (ibu) Amrita Singh (lahir 9 Februari 1958)[1] adalah seorang pemeran film dan televisi asal India.[2] Kehidupan awal Singh lahir dalam sebuah keluarga Sikh.[3] Ia merupakan putri dari Rukhsana Sultana,[4] …

British politician (born 1950) Jean LambertPrincipal Speaker of the Green PartyIn office1998–1999Serving with Mike WoodinPreceded byPeg AlexanderSucceeded byMargaret WrightIn office1992–1993Serving with Richard Lawson (1992) Mallen Baker (1992-1993)Preceded byOffice createdSucceeded byJan ClarkMember of the European Parliamentfor LondonIn office10 June 1999 – 1 July 2019[1][2]Preceded byPosition establishedSucceeded byScott Ainslie Personal det…

English footballer (born 1995) Zach Clough Clough with Adelaide United in 2022Personal informationFull name Zach Paul John Clough[1]Date of birth (1995-03-08) 8 March 1995 (age 29)[2]Place of birth Denton, EnglandHeight 1.73 m (5 ft 8 in)Position(s) Attacking midfielder, strikerTeam informationCurrent team Adelaide UnitedNumber 10Youth career2003–2013 Bolton WanderersSenior career*Years Team Apps (Gls)2013–2017 Bolton Wanderers 59 (21)2017–2021 Nottingha…

Animal rights organization based in Cologne This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (December 2023) (Learn how and when to remove this message) This articl…

Pierre-Robert Le Cornier de CidevillePortrait par Guillaume Voiriot.BiographieNaissance 2 septembre 1693RouenDécès 5 mars 1776 (à 82 ans)ParisFormation Collège Louis-le-GrandActivités Magistrat, homme de lettres, bibliophileParentèle Jacques Le Cornier de Sainte-Hélène (d)Autres informationsPropriétaire de Château de LaunayMembre de Académie des sciences, belles-lettres et arts de Rouen (1744)modifier - modifier le code - modifier Wikidata Pierre-Robert Le Cornier de Cideville, n…

Kembali kehalaman sebelumnya