Orientation (vector space)

The left-handed orientation is shown on the left, and the right-handed on the right.

The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called unoriented.

In mathematics, orientability is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In linear algebra over the real numbers, the notion of orientation makes sense in arbitrary finite dimension, and is a kind of asymmetry that makes a reflection impossible to replicate by means of a simple displacement. Thus, in three dimensions, it is impossible to make the left hand of a human figure into the right hand of the figure by applying a displacement alone, but it is possible to do so by reflecting the figure in a mirror. As a result, in the three-dimensional Euclidean space, the two possible basis orientations are called right-handed and left-handed (or right-chiral and left-chiral).

Definition

Let V be a finite-dimensional real vector space and let b1 and b2 be two ordered bases for V. It is a standard result in linear algebra that there exists a unique linear transformation A : VV that takes b1 to b2. The bases b1 and b2 are said to have the same orientation (or be consistently oriented) if A has positive determinant; otherwise they have opposite orientations. The property of having the same orientation defines an equivalence relation on the set of all ordered bases for V. If V is non-zero, there are precisely two equivalence classes determined by this relation. An orientation on V is an assignment of +1 to one equivalence class and −1 to the other.[1]

Every ordered basis lives in one equivalence class or another. Thus any choice of a privileged ordered basis for V determines an orientation: the orientation class of the privileged basis is declared to be positive.

For example, the standard basis on Rn provides a standard orientation on Rn (in turn, the orientation of the standard basis depends on the orientation of the Cartesian coordinate system on which it is built). Any choice of a linear isomorphism between V and Rn will then provide an orientation on V.

The ordering of elements in a basis is crucial. Two bases with a different ordering will differ by some permutation. They will have the same/opposite orientations according to whether the signature of this permutation is ±1. This is because the determinant of a permutation matrix is equal to the signature of the associated permutation.

Similarly, let A be a nonsingular linear mapping of vector space Rn to Rn. This mapping is orientation-preserving if its determinant is positive.[2] For instance, in R3 a rotation around the Z Cartesian axis by an angle α is orientation-preserving: while a reflection by the XY Cartesian plane is not orientation-preserving:

Zero-dimensional case

The concept of orientation degenerates in the zero-dimensional case. A zero-dimensional vector space has only a single point, the zero vector. Consequently, the only basis of a zero-dimensional vector space is the empty set . Therefore, there is a single equivalence class of ordered bases, namely, the class whose sole member is the empty set. This means that an orientation of a zero-dimensional space is a function It is therefore possible to orient a point in two different ways, positive and negative.

Because there is only a single ordered basis , a zero-dimensional vector space is the same as a zero-dimensional vector space with ordered basis. Choosing or therefore chooses an orientation of every basis of every zero-dimensional vector space. If all zero-dimensional vector spaces are assigned this orientation, then, because all isomorphisms among zero-dimensional vector spaces preserve the ordered basis, they also preserve the orientation. This is unlike the case of higher-dimensional vector spaces where there is no way to choose an orientation so that it is preserved under all isomorphisms.

However, there are situations where it is desirable to give different orientations to different points. For example, consider the fundamental theorem of calculus as an instance of Stokes' theorem. A closed interval [a, b] is a one-dimensional manifold with boundary, and its boundary is the set {a, b}. In order to get the correct statement of the fundamental theorem of calculus, the point b should be oriented positively, while the point a should be oriented negatively.

On a line

The one-dimensional case deals with a line which may be traversed in one of two directions. There are two orientations to a line just as there are two orientations to a circle. In the case of a line segment (a connected subset of a line), the two possible orientations result in directed line segments. An orientable surface sometimes has the selected orientation indicated by the orientation of a line perpendicular to the surface.

Alternate viewpoints

Multilinear algebra

For any n-dimensional real vector space V we can form the kth-exterior power of V, denoted ΛkV. This is a real vector space of dimension . The vector space ΛnV (called the top exterior power) therefore has dimension 1. That is, ΛnV is just a real line. There is no a priori choice of which direction on this line is positive. An orientation is just such a choice. Any nonzero linear form ω on ΛnV determines an orientation of V by declaring that x is in the positive direction when ω(x) > 0. To connect with the basis point of view we say that the positively-oriented bases are those on which ω evaluates to a positive number (since ω is an n-form we can evaluate it on an ordered set of n vectors, giving an element of R). The form ω is called an orientation form. If {ei} is a privileged basis for V and {ei} is the dual basis, then the orientation form giving the standard orientation is e1e2 ∧ … ∧ en.

The connection of this with the determinant point of view is: the determinant of an endomorphism can be interpreted as the induced action on the top exterior power.

Lie group theory

Let B be the set of all ordered bases for V. Then the general linear group GL(V) acts freely and transitively on B. (In fancy language, B is a GL(V)-torsor). This means that as a manifold, B is (noncanonically) homeomorphic to GL(V). Note that the group GL(V) is not connected, but rather has two connected components according to whether the determinant of the transformation is positive or negative (except for GL0, which is the trivial group and thus has a single connected component; this corresponds to the canonical orientation on a zero-dimensional vector space). The identity component of GL(V) is denoted GL+(V) and consists of those transformations with positive determinant. The action of GL+(V) on B is not transitive: there are two orbits which correspond to the connected components of B. These orbits are precisely the equivalence classes referred to above. Since B does not have a distinguished element (i.e. a privileged basis) there is no natural choice of which component is positive. Contrast this with GL(V) which does have a privileged component: the component of the identity. A specific choice of homeomorphism between B and GL(V) is equivalent to a choice of a privileged basis and therefore determines an orientation.

More formally: , and the Stiefel manifold of n-frames in is a -torsor, so is a torsor over , i.e., its 2 points, and a choice of one of them is an orientation.

Geometric algebra

Parallel plane segments with the same attitude, magnitude and orientation, all corresponding to the same bivector ab.[3]

The various objects of geometric algebra are charged with three attributes or features: attitude, orientation, and magnitude.[4] For example, a vector has an attitude given by a straight line parallel to it, an orientation given by its sense (often indicated by an arrowhead) and a magnitude given by its length. Similarly, a bivector in three dimensions has an attitude given by the family of planes associated with it (possibly specified by the normal line common to these planes [5]), an orientation (sometimes denoted by a curved arrow in the plane) indicating a choice of sense of traversal of its boundary (its circulation), and a magnitude given by the area of the parallelogram defined by its two vectors.[6]

Orientation on manifolds

The orientation of a volume may be determined by the orientation on its boundary, indicated by the circulating arrows.

Each point p on an n-dimensional differentiable manifold has a tangent space TpM which is an n-dimensional real vector space. Each of these vector spaces can be assigned an orientation. Some orientations "vary smoothly" from point to point. Due to certain topological restrictions, this is not always possible. A manifold that admits a smooth choice of orientations for its tangent spaces is said to be orientable.

See also

References

  1. ^ W., Weisstein, Eric. "Vector Space Orientation". mathworld.wolfram.com. Retrieved 2017-12-08.{{cite web}}: CS1 maint: multiple names: authors list (link)
  2. ^ W., Weisstein, Eric. "Orientation-Preserving". mathworld.wolfram.com. Retrieved 2017-12-08.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. ^ Leo Dorst; Daniel Fontijne; Stephen Mann (2009). Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2nd ed.). Morgan Kaufmann. p. 32. ISBN 978-0-12-374942-0. The algebraic bivector is not specific on shape; geometrically it is an amount of oriented area in a specific plane, that's all.
  4. ^ B Jancewicz (1996). "Tables 28.1 & 28.2 in section 28.3: Forms and pseudoforms". In William Eric Baylis (ed.). Clifford (geometric) algebras with applications to physics, mathematics, and engineering. Springer. p. 397. ISBN 0-8176-3868-7.
  5. ^ William Anthony Granville (1904). "§178 Normal line to a surface". Elements of the differential and integral calculus. Ginn & Company. p. 275.
  6. ^ David Hestenes (1999). New foundations for classical mechanics: Fundamental Theories of Physics (2nd ed.). Springer. p. 21. ISBN 0-7923-5302-1.

Read other articles:

Daanbantayan Munisipalitas di Filipina Tempat categoria:Articles mancats de coordenades Negara berdaulatFilipinaRegion di FilipinaVisayas TengahProvinsi di FilipinaCebu NegaraFilipina Pembagian administratifAguho Bagay (en) Bakhawan (en) Bateria (en) Bitoon (en) Calape (en) Carnaza Dalingding (en) Lanao (en) Logon Malbago (en) Malingin (en) Maya (en) Pajo (en) Paypay (en) Poblacion (en) Talisay (en) Tapilon (en) Tinubdan (en) Tominjao (en) PendudukTotal93.502  (2020 )Tempat tinggal22.289 &#…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Pakistani wedding songs – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and …

Fragneto MonforteKomuneComune di Fragneto MonforteLokasi Fragneto Monforte di Provinsi BeneventoNegara ItaliaWilayah CampaniaProvinsiBenevento (BN)Luas[1] • Total24,49 km2 (9,46 sq mi)Ketinggian[2]380 m (1,250 ft)Populasi (2016)[3] • Total1.889 • Kepadatan77/km2 (200/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos82020Kode area telepon0824Situs webhttp://www.comune.…

Bruce McKenzieBruce McKenzie kedua dari kiri.Lahir1919Richmond, Provinsi Natal, Afrika SelatanMeninggal24 Mei 1978 (usia 59)di atas Perbukitan Ngong, KenyaSebab meninggalBom waktuGelarMenteri Pertanian Kenya Bruce Roy McKenzie DSO DFC (1919 – 24 Mei 1978) adalah seorang politikus Kenya kelahiran Afrika Selatan. Ia menjadi Menteri Pertanian di Kenya[1] pada masa kepresidenan Jomo Kenyatta, dimana ia menjadi penasehat.[2] Ia dituduh menjadi agen intelijen Inggris, Afrika…

العلاقات اللوكسمبورغية الميكرونيسية لوكسمبورغ ولايات ميكرونيسيا المتحدة   لوكسمبورغ   ولايات ميكرونيسيا المتحدة تعديل مصدري - تعديل   العلاقات اللوكسمبورغية الميكرونيسية هي العلاقات الثنائية التي تجمع بين لوكسمبورغ وولايات ميكرونيسيا المتحدة.[1][2][…

Argentine football manager Miguel Ángel Zahzú Zahzú in 2007Personal informationFull name Miguel Ángel ZahzúDate of birth (1966-02-24) 24 February 1966 (age 58)Place of birth Morón, ArgentinaHeight 1.87 m (6 ft 2 in)Position(s) GoalkeeperYouth career Vélez SarsfieldSenior career*Years Team Apps (Gls)1987–1988 Atlético Lugano 1988–1989 Midland 38 (0)1989–1990 San Telmo 1990–1991 Nueva Chicago 1991–1993 Laferrere 1994 Cobreloa 1994–1995 Colegiales 1995 Argent…

عبد المطلب الفحل معلومات شخصية الميلاد سنة 1942  الزومة  الوفاة 20 ديسمبر 2021 (78–79 سنة)[1]  الخرطوم[2]  مواطنة السودان  الحياة العملية المدرسة الأم جامعة القاهرة (الشهادة:بكالوريوس في الآداب)جامعة القرآن الكريم والعلوم الإسلامية (الشهادة:ماجستير)جامعة أم در…

Eparki Kalyanकल्याण के सूबाGereja Katolik Siro-Malabar LokasiNegara IndiaProvinsi gerejawiBombayMetropolitBombay, Pune dan NasikStatistikPopulasi- Katolik(per 2013)1,00,000Paroki106InformasiDenominasiGereja Katolik Siro-MalabarRitusRitus Siria TimurPendirian30 April 1988KatedralKatedral St Thomas di KalyanPelindungSanto Tomas RasulKepemimpinan kiniPausFransiskusUskup agung mayorMar George AlencherryUskupMar Mar Thomas ElavanalUskup agungKardinal Oswald Grac…

1805 Battle during the War of the Third Coalition Battle of Cape OrtegalPart of the Trafalgar campaign of the War of the Third CoalitionBringing Home the Prizes, Francis SartoriusDate4 November 1805LocationOff Cape Ortegal, Bay of Biscay, Atlantic43°46′20″N 7°52′05″W / 43.7722°N 7.8681°W / 43.7722; -7.8681Result British victoryBelligerents United Kingdom FranceCommanders and leaders Richard Strachan Pierre le Pelley Strength 4 ships of the line4 frigates …

Liga Eropa UEFA 2009–10The Volksparkstadion in Hamburg hosted the final.Informasi turnamenJadwalpenyelenggaraan2 Juli 2009 – 12 Mei 2010Jumlahtim peserta48+8 (berkompetisi)159 (kualifikasi)Hasil turnamenJuara Atlético Madrid (gelar ke-1)Tempat kedua FulhamStatistik turnamenJumlahpertandingan202Jumlah gol539 (2,67 per pertandingan)Pencetak golterbanyakClaudio Pizarro (9)Óscar Cardozo (9)← 2008–09 (Piala UEFA) 2010–11 → Liga Eropa UEFA 2009-10 adalah musim pertama Liga E…

Jalur kereta api Kedungjati–SecangIkhtisarJenisJalur lintas cabangSistemJalur kereta api rel ringanStatus Beroperasi Tuntang - Bedono Reaktivasi Stasiun Kedungjati -Tuntang terhenti sementara Tidak Beroperasi Bedono - SecangLokasiJawa TengahTerminusKedungjatiSecangOperasiDibangun olehNederlandsch-Indische Spoorweg MaatschappijDibuka1873-1905Ditutup1976Dibuka kembali21 April 1978 (sebagai jalur KA museum)PemilikPT Kereta Api IndonesiaOperator Daerah Operasi IV Semarang Kedungjati - Gemawang Dae…

Teluk SuezLetakMesirKoordinat28°45′N 33°00′E / 28.750°N 33.000°E / 28.750; 33.000Koordinat: 28°45′N 33°00′E / 28.750°N 33.000°E / 28.750; 33.000Panjang maksimal314 km (195 mi)Lebar maksimal32 km (20 mi)Kedalaman rata-rata40 m (130 ft)Kedalaman maksimal70 m (230 ft) Teluk Suez (Arab: خليج السويسcode: ar is deprecated ; Khalīǧ as-Suwais) adalah teluk dari percabangan dari Laut Merah …

Disambiguazione – Se stai cercando altri significati, vedi Quiroga (disambigua). Quirogacomune Quiroga – Veduta LocalizzazioneStato Spagna Comunità autonoma Galizia Provincia Lugo TerritorioCoordinate42°28′32.88″N 7°16′18.12″W / 42.4758°N 7.2717°W42.4758; -7.2717 (Quiroga)Coordinate: 42°28′32.88″N 7°16′18.12″W / 42.4758°N 7.2717°W42.4758; -7.2717 (Quiroga) Altitudine267 m s.l.m. Superficie317,39 km² Abitan…

Dimitri LeonidasLahir14 November 1987 (umur 36) Brent, London, Inggris, Britania RayaPekerjaanAktorTahun aktif2001-sekarangKeluargaHelena Leonidas Dimitri Leonidas (lahir 14 November 1987) adalah aktor asal Britania Raya. Untuk sebagian besar dari karier masa kecilnya termasuk tahun-tahun ia berada di serial televisi BBC Grange Hill, di mana dia dikreditkan sebagai Shane Leonidas. Sejak tahun 2008 ia mulai menggunakan nama lahirnya Dimitri Leonidas. Filmografi Tahun Film/serial TV Pera…

Chairman of International Cricket CouncilIncumbentGreg Barclay, (New Zealand)since 24 November 2020StyleMr.Term length2 years, renewable twice (6 years maximum)[1]Inaugural holderN. Srinivasan, (India)Formation2014 (10 years ago) (2014)DeputyImran Khwaja, (Singapore)SalaryN/A (Honorary position)Websitewww.icc-cricket.com The Chairman of the International Cricket Council (ICC) is the highest position in the governing body of world cricket. The position was established a…

Human settlement in EnglandWillishamSt Mary's Church, WillishamWillishamLocation within SuffolkPopulation362 (2011)[1]OS grid referenceTM070506DistrictMid-SuffolkShire countySuffolkRegionEastCountryEnglandSovereign stateUnited KingdomPost townIPSWICHPostcode districtIP8Dialling code01473PoliceSuffolkFireSuffolkAmbulanceEast of England UK ParliamentCentral Suffolk and North Ipswich List of places UK England Suffolk 52°07′11″N 1°00′49″E…

State agency of Kentucky This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (June 2022) (Learn how and when to remove this message) The Kentucky Department of Juvenile Justice (KYDJJ) is a state agency of Kentucky headquartered in unincorporated Franklin County, near Frankfo…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

For the administrative subdivision, see Kukherd District. For the administrative subdivisions, see Kukherd District and Kukherd Rural District. Archaeological site in Hormozgan, IranParaw Kukherd — Qanat Paraw پاراو کوخردArchaeological siteCountry IranProvinceHormozganCountyBastakBakhshKukherdTime zoneUTC+3:30 (IRST) • Summer (DST)UTC+4:30 (IRDT) Paraw Kukherd (from Arabic: باراو كوخرد, in Persian: پاراو کوخرد is a water management system used. Th…

Dutch footballer (born 2002) Brian Brobbey Brobbey playing for Ajax in 2023Personal informationFull name Brian Ebenezer Adjei BrobbeyDate of birth (2002-02-01) 1 February 2002 (age 22)Place of birth Amsterdam, NetherlandsHeight 1.80 m (5 ft 11 in)[1]Position(s) StrikerTeam informationCurrent team AjaxNumber 9Youth career0000–2010 AFC2010–2018 AjaxSenior career*Years Team Apps (Gls)2018–2021 Jong Ajax 32 (16)2020–2021 Ajax 12 (3)2021–2022 RB Leipzig 9 (0)2022…

Kembali kehalaman sebelumnya