Parity of a permutation

Permutations of 4 elements

Odd permutations have a green or orange background. The numbers in the right column are the inversion numbers (sequence A034968 in the OEIS), which have the same parity as the permutation.

In mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y).

The sign, signature, or signum of a permutation σ is denoted sgn(σ) and defined as +1 if σ is even and −1 if σ is odd. The signature defines the alternating character of the symmetric group Sn. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (εσ), which is defined for all maps from X to X, and has value zero for non-bijective maps.

The sign of a permutation can be explicitly expressed as

sgn(σ) = (−1)N(σ)

where N(σ) is the number of inversions in σ.

Alternatively, the sign of a permutation σ can be defined from its decomposition into the product of transpositions as

sgn(σ) = (−1)m

where m is the number of transpositions in the decomposition. Although such a decomposition is not unique, the parity of the number of transpositions in all decompositions is the same, implying that the sign of a permutation is well-defined.[1]

Example

Consider the permutation σ of the set {1, 2, 3, 4, 5} defined by and In one-line notation, this permutation is denoted 34521. It can be obtained from the identity permutation 12345 by three transpositions: first exchange the numbers 2 and 4, then exchange 3 and 5, and finally exchange 1 and 3. This shows that the given permutation σ is odd. Following the method of the cycle notation article, this could be written, composing from right to left, as

There are many other ways of writing σ as a composition of transpositions, for instance

σ = (1 5)(3 4)(2 4)(1 2)(2 3),

but it is impossible to write it as a product of an even number of transpositions.

Properties

The identity permutation is an even permutation.[1] An even permutation can be obtained as the composition of an even number (and only an even number) of exchanges (called transpositions) of two elements, while an odd permutation can be obtained by (only) an odd number of transpositions.

The following rules follow directly from the corresponding rules about addition of integers:[1]

  • the composition of two even permutations is even
  • the composition of two odd permutations is even
  • the composition of an odd and an even permutation is odd

From these it follows that

  • the inverse of every even permutation is even
  • the inverse of every odd permutation is odd

Considering the symmetric group Sn of all permutations of the set {1, ..., n}, we can conclude that the map

sgn: Sn → {−1, 1} 

that assigns to every permutation its signature is a group homomorphism.[2]

Furthermore, we see that the even permutations form a subgroup of Sn.[1] This is the alternating group on n letters, denoted by An.[3] It is the kernel of the homomorphism sgn.[4] The odd permutations cannot form a subgroup, since the composite of two odd permutations is even, but they form a coset of An (in Sn).[5]

If n > 1, then there are just as many even permutations in Sn as there are odd ones;[3] consequently, An contains n!/2 permutations. (The reason is that if σ is even then (1  2)σ is odd, and if σ is odd then (1  2)σ is even, and these two maps are inverse to each other.)[3]

A cycle is even if and only if its length is odd. This follows from formulas like

In practice, in order to determine whether a given permutation is even or odd, one writes the permutation as a product of disjoint cycles. The permutation is odd if and only if this factorization contains an odd number of even-length cycles.

Another method for determining whether a given permutation is even or odd is to construct the corresponding permutation matrix and compute its determinant. The value of the determinant is the same as the parity of the permutation.

Every permutation of odd order must be even. The permutation (1 2)(3 4) in A4 shows that the converse is not true in general.

Equivalence of the two definitions

This section presents proofs that the parity of a permutation σ can be defined in two equivalent ways:

  • as the parity of the number of inversions in σ (under any ordering); or
  • as the parity of the number of transpositions that σ can be decomposed to (however we choose to decompose it).
Proof 1

Let σ be a permutation on a ranked domain S. Every permutation can be produced by a sequence of transpositions (2-element exchanges). Let the following be one such decomposition

σ = T1 T2 ... Tk

We want to show that the parity of k is equal to the parity of the number of inversions of σ.

Every transposition can be written as a product of an odd number of transpositions of adjacent elements, e.g.

(2 5) = (2 3) (3 4) (4 5) (4 3) (3 2).

Generally, we can write the transposition (i i+d) on the set {1,...,i,...,i+d,...} as the composition of 2d−1 adjacent transpositions by recursion on d:

  • The base case d=1 is trivial.
  • In the recursive case, first rewrite (i, i+d) as (i, i+1) (i+1, i+d) (i, i+1). Then recursively rewrite (i+1, i+d) as adjacent transpositions.

If we decompose in this way each of the transpositions T1 ... Tk above, we get the new decomposition:

σ = A1 A2 ... Am

where all of the A1...Am are adjacent. Also, the parity of m is the same as that of k.

This is a fact: for all permutation τ and adjacent transposition a, either has one less or one more inversion than τ. In other words, the parity of the number of inversions of a permutation is switched when composed with an adjacent transposition.

Therefore, the parity of the number of inversions of σ is precisely the parity of m, which is also the parity of k. This is what we set out to prove.

We can thus define the parity of σ to be that of its number of constituent transpositions in any decomposition. And this must agree with the parity of the number of inversions under any ordering, as seen above. Therefore, the definitions are indeed well-defined and equivalent.
Proof 2

An alternative proof uses the Vandermonde polynomial

So for instance in the case n = 3, we have

Now for a given permutation σ of the numbers {1, ..., n}, we define

Since the polynomial has the same factors as except for their signs, it follows that sgn(σ) is either +1 or −1. Furthermore, if σ and τ are two permutations, we see that

Since with this definition it is furthermore clear that any transposition of two elements has signature −1, we do indeed recover the signature as defined earlier.
Proof 3

A third approach uses the presentation of the group Sn in terms of generators τ1, ..., τn−1 and relations

  •   for all i
  •   for all i < n − 1
  •   if
[Here the generator represents the transposition (i, i + 1).] All relations keep the length of a word the same or change it by two. Starting with an even-length word will thus always result in an even-length word after using the relations, and similarly for odd-length words. It is therefore unambiguous to call the elements of Sn represented by even-length words "even", and the elements represented by odd-length words "odd".
Proof 4

Recall that a pair x, y such that x < y and σ(x) > σ(y) is called an inversion. We want to show that the count of inversions has the same parity as the count of 2-element swaps. To do that, we can show that every swap changes the parity of the count of inversions, no matter which two elements are being swapped and what permutation has already been applied. Suppose we want to swap the ith and the jth element. Clearly, inversions formed by i or j with an element outside of [i, j] will not be affected. For the n = ji − 1 elements within the interval (i, j), assume vi of them form inversions with i and vj of them form inversions with j. If i and j are swapped, those vi inversions with i are gone, but nvi inversions are formed. The count of inversions i gained is thus n − 2vi, which has the same parity as n.

Similarly, the count of inversions j gained also has the same parity as n. Therefore, the count of inversions gained by both combined has the same parity as 2n or 0. Now if we count the inversions gained (or lost) by swapping the ith and the jth element, we can see that this swap changes the parity of the count of inversions, since we also add (or subtract) 1 to the number of inversions gained (or lost) for the pair (i,j).

Note that initially when no swap is applied, the count of inversions is 0. Now we obtain equivalence of the two definitions of parity of a permutation.
Proof 5

Consider the elements that are sandwiched by the two elements of a transposition. Each one lies completely above, completely below, or in between the two transposition elements.

An element that is either completely above or completely below contributes nothing to the inversion count when the transposition is applied. Elements in-between contribute .

As the transposition itself supplies inversion, and all others supply 0 (mod 2) inversions, a transposition changes the parity of the number of inversions.

Other definitions and proofs

The parity of a permutation of points is also encoded in its cycle structure.

Let σ = (i1 i2 ... ir+1)(j1 j2 ... js+1)...(1 2 ... u+1) be the unique decomposition of σ into disjoint cycles, which can be composed in any order because they commute. A cycle (a b c ... x y z) involving k + 1 points can always be obtained by composing k transpositions (2-cycles):

so call k the size of the cycle, and observe that, under this definition, transpositions are cycles of size 1. From a decomposition into m disjoint cycles we can obtain a decomposition of σ into k1 + k2 + ... + km transpositions, where ki is the size of the ith cycle. The number N(σ) = k1 + k2 + ... + km is called the discriminant of σ, and can also be computed as

if we take care to include the fixed points of σ as 1-cycles.

Suppose a transposition (a b) is applied after a permutation σ. When a and b are in different cycles of σ then

,

and if a and b are in the same cycle of σ then

.

In either case, it can be seen that N((a b)σ) = N(σ) ± 1, so the parity of N((a b)σ) will be different from the parity of N(σ).

If σ = t1t2 ... tr is an arbitrary decomposition of a permutation σ into transpositions, by applying the r transpositions after t2 after ... after tr after the identity (whose N is zero) observe that N(σ) and r have the same parity. By defining the parity of σ as the parity of N(σ), a permutation that has an even length decomposition is an even permutation and a permutation that has one odd length decomposition is an odd permutation.

Remarks
  • A careful examination of the above argument shows that rN(σ), and since any decomposition of σ into cycles whose sizes sum to r can be expressed as a composition of r transpositions, the number N(σ) is the minimum possible sum of the sizes of the cycles in a decomposition of σ, including the cases in which all cycles are transpositions.
  • This proof does not introduce a (possibly arbitrary) order into the set of points on which σ acts.

Generalizations

Parity can be generalized to Coxeter groups: one defines a length function ℓ(v), which depends on a choice of generators (for the symmetric group, adjacent transpositions), and then the function v ↦ (−1)ℓ(v) gives a generalized sign map.

See also

Notes

  1. ^ a b c d Jacobson (2009), p. 50.
  2. ^ Rotman (1995), p. 9, Theorem 1.6.
  3. ^ a b c Jacobson (2009), p. 51.
  4. ^ Goodman, p. 116, definition 2.4.21
  5. ^ Meijer & Bauer (2004), p. 72

References

  • Weisstein, Eric W. "Even Permutation". MathWorld.
  • Jacobson, Nathan (2009). Basic algebra. Vol. 1 (2nd ed.). Dover. ISBN 978-0-486-47189-1.
  • Rotman, J.J. (1995). An introduction to the theory of groups. Graduate texts in mathematics. Springer-Verlag. ISBN 978-0-387-94285-8.
  • Goodman, Frederick M. Algebra: Abstract and Concrete. ISBN 978-0-9799142-0-1.
  • Meijer, Paul Herman Ernst; Bauer, Edmond (2004). Group theory: the application to quantum mechanics. Dover classics of science and mathematics. Dover Publications. ISBN 978-0-486-43798-9.

Read other articles:

Matoatoa Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Reptilia Ordo: Squamata Subordo: Lacertilia/Sauria Famili: Gekkonidae Genus: MatoatoaNussbaum, Raxworthy & Pronk, 1998 Matoatoa adalah genus tokek kecil yang tersebar luas di pesisir selatan dan barat daya pulau Madagaskar.[1] Spesies Hanya terdiri dari dua spesies, yaitu:[1] Matoatoa brevipes (MOCQUARD, 1900) Matoatoa spannringi NUSSBAUM, RAXWORTHY & PRONK, 1998 Referensi ^ a b Matoatoa di Reptarium.cz…

  لمعانٍ أخرى، طالع بيت الشامي (توضيح). قرية بيت الشامي  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة صنعاء المديرية مديرية بني مطر العزلة عزلة بقلان السكان التعداد السكاني 2004 السكان 679   • الذكور 344   • الإناث 335   • عدد الأسر 78   • عدد المساكن 76 …

بوبيني - بابلو بيكاسوBobigny - Pablo Picasso (بالفرنسية) معلومات عامةالتقسيم الإداري بوبيني البلد  فرنسا شبكة المواصلات مترو باريس المالك الهيئة المستقلة للنقل في باريس الإدارة الهيئة المستقلة للنقل في باريس الخطوط الخط 5 لمترو باريسالخط 15 لمترو باريس المحطات المجاورة بوبيني - بان…

Abdullah bin RawahahMakam Abdullah, Zaid bin Haritsah, dan Ja'far bin Abi Thalib di Al-Mazar dekat Mu'tah di YordaniaLahirMadinahMeninggal629Mu'tahSebab meninggalSyahid di Pertempuran Mu'tahMakamAl-Mazar, Mu'tahDikenal atasSahabat NabiOrang tuaRawahah bin Tsa'labah (bapak)Kabsyah binti Waqid (ibu) Abdullah bin Rawahah (Arab: عبد الله بن رواحةcode: ar is deprecated ) adalah salah seorang dari sahabat Nabi Muhammad. Asal dan keluarga Abdullah bin Rawahah bin Tsa'labah bin Imrul …

Danau Michigan Danau Michigan ialah salah satu dari 5 Danau-danau Besar di Amerika Utara. Memiliki wilayah permukaan 22.300 mil persegi (57750 km persegi). Panjangnya 307 mil dan luasnya 118 mil. Danau Michigan ialah danau terbesar ke-5 di dunia. Dibatasi oleh negara bagian Amerika Serikat: Indiana, Illinois, Wisconsin, dan Michigan. Kota terbesar di Danau Michigan ialah Chicago. lbsDanau-Danau BesarAmerika Utara(daftar): Danau Superior · Danau Michigan · Danau Huron …

Untuk anaksungai Tigris, lihat Khabur (Tigris). Sungai Kebar (Khabur) Bahasa Arab: نهر الخابور, Bahasa Aram:ܢܗܪܐ ܕܚܒܘܪ, Bahasa Kurdi: Çemê Xabûr, Bahasa Turki: Habur Nehri, Habor, Chaboras, Bahasa Ibrani Kebar,Chebar sungai Khabur sebelah selatan dari Al-Hasakah Countries Suriah, Turki Kota Ra's al-'Ayn, Al-Hasakah, Busayrah Sumber Ras al-'Ayn  - elevation 350 m (1.148 ft) Muara sungai Efrat Panjang 486 km (302 mi) DAS 37.081 km2 (14.317&#…

Dutch cyclist (1918–1973) In this Dutch name, the surname is de Hoog, not Hoog. Henk de HoogHenk de Hoog (1952)Personal informationBorn(1918-08-12)12 August 1918Amsterdam, NetherlandsDied8 May 1973(1973-05-08) (aged 54)Amstelveen, NetherlandsTeam informationRoleRider Henk de Hoog (12 August 1918 – 8 May 1973) was a Dutch racing cyclist. He rode in the 1948 and 1949 Tour de France.[1][2] References ^ 35ème Tour de France 1948 (in French). Memoire du cyclisme. Archive…

Head of Government of Serbia President of the Government of SerbiaПредседник Владе СрбијеPredsednik Vlade SrbijeCoat of arms of SerbiaFlag of SerbiaIncumbentMiloš VučevićActing since 3 April 2024Government of SerbiaStyleHis ExcellencyTypeHead of governmentMember ofGovernmentSeatNemanjina Street 11NominatorThe PresidentAppointerNational AssemblyTerm lengthNo term limitFormation27 August 1805First holderMateja NenadovićUnofficial namesPrime ministerDeputyFirst De…

В Википедии есть статьи о других людях с такой фамилией, см. Соломин. Юрий Соломин Имя при рождении Юрий Мефодьевич Соломин Дата рождения 18 июня 1935(1935-06-18) Место рождения Чита, Восточно-Сибирский край, РСФСР, СССР Дата смерти 11 января 2024(2024-01-11)[1][2] (88 лет) Место смерти М…

LontorNama lokal: Banda BesarBanda Neira dan Lontor dari Banda ApiLontorLokasi di IndonesiaGeografiLokasiLaut BandaKoordinat4°33′S 129°55′E / 4.550°S 129.917°E / -4.550; 129.917KepulauanKepulauan BandaLuas26.37 km2Panjang12 kmLebar3 km Lontor di awal abad kedua puluhLontor tahun 2019 Lontor, juga dikenal sebagai Lonthor atau Lonthoir, atau secara lokal dikenal sebagai Banda Besar, adalah pulau di Kepulauan Banda, Indonesia.[1] Pulau ini dike…

Ecosystem of northeastern China between 133 and 120 million years ago Part of a series onPaleontology Fossils Fossilization Trace fossil Microfossil Fossil preparation Index fossil List of fossils List of fossil sites Lagerstätte fossil beds List of transitional fossils List of human evolution fossils Natural history Biogeography Extinction event Geochronology Geologic time scale Geologic record History of life Origin of life Paleoclimatology Timeline of evolution Transitional fossil Organs and…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SMP Negeri 1 AmbonInformasiRentang kelasVII, VIII, IXKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Karang Panjang, Ambon, MalukuMoto SMP Negeri (SMPN) 1 Ambon, merupakan salah satu Sekolah Menengah Pertama Negeri yang ada di Provinsi Maluku, I…

Abat-voix au-dessus de la chaire de l'église Saint-Martin de Dachstein en Alsace. L'abat-voix est une sorte de dôme ou de dais, placé au-dessus de la cuve d'une chaire de vérité, afin de renvoyer la voix du prédicateur vers l'assistance et ainsi en améliorer l'audibilité. Comme les autres parties de la chaire de vérité, l'abat-voix se développa artistiquement, au fil des temps (de l'époque baroque). Ainsi le plafond de l'abat-voix est souvent agrémenté d'une colombe sculptée qui s…

Halaman ini berisi artikel tentang kota di Jawa Timur, Indonesia. Untuk kabupaten bernama sama, lihat Kabupaten Pasuruan. Kota PasuruanKotaTranskripsi bahasa daerah • Hanacarakaꦥꦱꦸꦫꦸꦃꦲꦤ꧀ • Abjad Pegonڤاسوروهن • Péghuڤاسوروواْن • Alfabét Bhâsa MadhurâPhêsoroanMasjid Agung Kota PasuruanRumah Singa Kota Pasuruan LambangJulukan: Pasuruan City of Madinah/ Madinah Van JavaMotto: Sura dira satya pati…

Cet article est une ébauche concernant l’informatique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Deux utilisateurs accédant à un serveur de fichiers Un serveur de fichiers permet de partager des données à travers un réseau. Le terme désigne souvent l'ordinateur (serveur) hébergeant le service applicatif. Il possède généralement une grande quantité d'espace disque où sont déposés des fichiers. …

John Goodwyn Barmby Bagian dari seriSosialisme Perkembangan Sejarah sosialisme Perdebatan kalkulasi sosialis Ekonomi sosialis Gagasan Penghitungan dalam barang Kepemilikan kolektif Koperasi Kepemilikan bersama Demokrasi ekonomi Perencanaan ekonomi Kesetaraan kesempatan Asosiasi bebas Demokrasi industri Model masukan-keluaran Internasionalisme Kupon kerja Keseimbangan material Ekonomi sejawat ke sejawat(Ekonomi berbagi) Produksi untuk penggunaan Kepemilikan negara Manajemen mandiri Dividen sosial…

German personal care brand that specializes in skin and body care For other uses, see Nivea (disambiguation). This article is in list format but may read better as prose. You can help by converting this article, if appropriate. Editing help is available. (November 2022) NiveaProduct typeSkin and body careOwnerBeiersdorf AGCountryGermanyIntroduced1911 (as Nivea)Related brandsEucerinAquaphorLabelloCoppertoneMarketsWorldwideWebsitenivea.com Nivea (German pronunciation: [niˈveːa] ⓘ,[…

Cet article est une ébauche concernant Los Angeles. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Leimert ParkGéographiePays  États-UnisÉtat CalifornieComté comté de Los AngelesCharter city Los AngelesCoordonnées 34° 00′ 28″ N, 118° 19′ 38″ OIdentifiantsGNIS 244720modifier - modifier le code - modifier Wikidata Leimert Park est à la fois le nom d'un quartier et …

Rank comparison chart of Non-commissioned officer and enlisted ranks for navies of Anglophone states. Officers Rank group Senior NCOs Junior NCOs Enlisted  Antigua and Barbuda Coast Guard[1]vte Master chief petty officer class 1 Master chief petty officer class 2 Chief petty officer Petty officer Leading seaman Able seaman  Royal Australian Navy[2]vte Warrant Officer of the Navy Warrant officer Chief petty officer Petty officer Leading seaman Able seaman Seaman  Ro…

Form of creative nonfiction This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Narrative journalism – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this message) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikiped…

Kembali kehalaman sebelumnya