Algebra over a field

In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".[1]

The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead.

An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space.

Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.

Replacing the field of scalars by a commutative ring leads to the more general notion of an algebra over a ring. Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients.

Definition and motivation

Motivating examples

Algebra vector space bilinear operator associativity commutativity
complex numbers product of complex numbers
Yes Yes
cross product of 3D vectors cross product
No No (anticommutative)
quaternions Hamilton product
Yes No
polynomials polynomial multiplication Yes Yes
square matrices matrix multiplication Yes No

Definition

Let K be a field, and let A be a vector space over K equipped with an additional binary operation from A × A to A, denoted here by · (that is, if x and y are any two elements of A, then x · y is an element of A that is called the product of x and y). Then A is an algebra over K if the following identities hold for all elements x, y, z in A , and all elements (often called scalars) a and b in K:

  • Right distributivity: (x + y) · z = x · z + y · z
  • Left distributivity: z · (x + y) = z · x + z · y
  • Compatibility with scalars: (ax) · (by) = (ab) (x · y).

These three axioms are another way of saying that the binary operation is bilinear. An algebra over K is sometimes also called a K-algebra, and K is called the base field of A. The binary operation is often referred to as multiplication in A. The convention adopted in this article is that multiplication of elements of an algebra is not necessarily associative, although some authors use the term algebra to refer to an associative algebra.

When a binary operation on a vector space is commutative, left distributivity and right distributivity are equivalent, and, in this case, only one distributivity requires a proof. In general, for non-commutative operations left distributivity and right distributivity are not equivalent, and require separate proofs.

Basic concepts

Algebra homomorphisms

Given K-algebras A and B, a homomorphism of K-algebras or K-algebra homomorphism is a K-linear map f: AB such that f(xy) = f(x) f(y) for all x, y in A. If A and B are unital, then a homomorphism satisfying f(1A) = 1B is said to be a unital homomorphism. The space of all K-algebra homomorphisms between A and B is frequently written as

A K-algebra isomorphism is a bijective K-algebra homomorphism.

Subalgebras and ideals

A subalgebra of an algebra over a field K is a linear subspace that has the property that the product of any two of its elements is again in the subspace. In other words, a subalgebra of an algebra is a non-empty subset of elements that is closed under addition, multiplication, and scalar multiplication. In symbols, we say that a subset L of a K-algebra A is a subalgebra if for every x, y in L and c in K, we have that x · y, x + y, and cx are all in L.

In the above example of the complex numbers viewed as a two-dimensional algebra over the real numbers, the one-dimensional real line is a subalgebra.

A left ideal of a K-algebra is a linear subspace that has the property that any element of the subspace multiplied on the left by any element of the algebra produces an element of the subspace. In symbols, we say that a subset L of a K-algebra A is a left ideal if for every x and y in L, z in A and c in K, we have the following three statements.

  1. x + y is in L (L is closed under addition),
  2. cx is in L (L is closed under scalar multiplication),
  3. z · x is in L (L is closed under left multiplication by arbitrary elements).

If (3) were replaced with x · z is in L, then this would define a right ideal. A two-sided ideal is a subset that is both a left and a right ideal. The term ideal on its own is usually taken to mean a two-sided ideal. Of course when the algebra is commutative, then all of these notions of ideal are equivalent. Conditions (1) and (2) together are equivalent to L being a linear subspace of A. It follows from condition (3) that every left or right ideal is a subalgebra.

This definition is different from the definition of an ideal of a ring, in that here we require the condition (2). Of course if the algebra is unital, then condition (3) implies condition (2).

Extension of scalars

If we have a field extension F/K, which is to say a bigger field F that contains K, then there is a natural way to construct an algebra over F from any algebra over K. It is the same construction one uses to make a vector space over a bigger field, namely the tensor product . So if A is an algebra over K, then is an algebra over F.

Kinds of algebras and examples

Algebras over fields come in many different types. These types are specified by insisting on some further axioms, such as commutativity or associativity of the multiplication operation, which are not required in the broad definition of an algebra. The theories corresponding to the different types of algebras are often very different.

Unital algebra

An algebra is unital or unitary if it has a unit or identity element I with Ix = x = xI for all x in the algebra.

Zero algebra

An algebra is called a zero algebra if uv = 0 for all u, v in the algebra,[2] not to be confused with the algebra with one element. It is inherently non-unital (except in the case of only one element), associative and commutative.

One may define a unital zero algebra by taking the direct sum of modules of a field (or more generally a ring) K and a K-vector space (or module) V, and defining the product of every pair of elements of V to be zero. That is, if λ, μK and u, vV, then (λ + u) (μ + v) = λμ + (λv + μu). If e1, ... ed is a basis of V, the unital zero algebra is the quotient of the polynomial ring K[E1, ..., En] by the ideal generated by the EiEj for every pair (i, j).

An example of unital zero algebra is the algebra of dual numbers, the unital zero R-algebra built from a one dimensional real vector space.

These unital zero algebras may be more generally useful, as they allow to translate any general property of the algebras to properties of vector spaces or modules. For example, the theory of Gröbner bases was introduced by Bruno Buchberger for ideals in a polynomial ring R = K[x1, ..., xn] over a field. The construction of the unital zero algebra over a free R-module allows extending this theory as a Gröbner basis theory for submodules of a free module. This extension allows, for computing a Gröbner basis of a submodule, to use, without any modification, any algorithm and any software for computing Gröbner bases of ideals.

Associative algebra

Examples of associative algebras include

Non-associative algebra

A non-associative algebra[3] (or distributive algebra) over a field K is a K-vector space A equipped with a K-bilinear map . The usage of "non-associative" here is meant to convey that associativity is not assumed, but it does not mean it is prohibited – that is, it means "not necessarily associative".

Examples detailed in the main article include:

Algebras and rings

The definition of an associative K-algebra with unit is also frequently given in an alternative way. In this case, an algebra over a field K is a ring A together with a ring homomorphism

where Z(A) is the center of A. Since η is a ring homomorphism, then one must have either that A is the zero ring, or that η is injective. This definition is equivalent to that above, with scalar multiplication

given by

Given two such associative unital K-algebras A and B, a unital K-algebra homomorphism f: AB is a ring homomorphism that commutes with the scalar multiplication defined by η, which one may write as

for all and . In other words, the following diagram commutes:

Structure coefficients

For algebras over a field, the bilinear multiplication from A × A to A is completely determined by the multiplication of basis elements of A. Conversely, once a basis for A has been chosen, the products of basis elements can be set arbitrarily, and then extended in a unique way to a bilinear operator on A, i.e., so the resulting multiplication satisfies the algebra laws.

Thus, given the field K, any finite-dimensional algebra can be specified up to isomorphism by giving its dimension (say n), and specifying n3 structure coefficients ci,j,k, which are scalars. These structure coefficients determine the multiplication in A via the following rule:

where e1,...,en form a basis of A.

Note however that several different sets of structure coefficients can give rise to isomorphic algebras.

In mathematical physics, the structure coefficients are generally written with upper and lower indices, so as to distinguish their transformation properties under coordinate transformations. Specifically, lower indices are covariant indices, and transform via pullbacks, while upper indices are contravariant, transforming under pushforwards. Thus, the structure coefficients are often written ci,jk, and their defining rule is written using the Einstein notation as

eiej = ci,jkek.

If you apply this to vectors written in index notation, then this becomes

(xy)k = ci,jkxiyj.

If K is only a commutative ring and not a field, then the same process works if A is a free module over K. If it isn't, then the multiplication is still completely determined by its action on a set that spans A; however, the structure constants can't be specified arbitrarily in this case, and knowing only the structure constants does not specify the algebra up to isomorphism.

Classification of low-dimensional unital associative algebras over the complex numbers

Two-dimensional, three-dimensional and four-dimensional unital associative algebras over the field of complex numbers were completely classified up to isomorphism by Eduard Study.[4]

There exist two such two-dimensional algebras. Each algebra consists of linear combinations (with complex coefficients) of two basis elements, 1 (the identity element) and a. According to the definition of an identity element,

It remains to specify

  for the first algebra,
  for the second algebra.

There exist five such three-dimensional algebras. Each algebra consists of linear combinations of three basis elements, 1 (the identity element), a and b. Taking into account the definition of an identity element, it is sufficient to specify

  for the first algebra,
  for the second algebra,
  for the third algebra,
  for the fourth algebra,
  for the fifth algebra.

The fourth of these algebras is non-commutative, and the others are commutative.

Generalization: algebra over a ring

In some areas of mathematics, such as commutative algebra, it is common to consider the more general concept of an algebra over a ring, where a commutative ring R replaces the field K. The only part of the definition that changes is that A is assumed to be an R-module (instead of a K-vector space).

Associative algebras over rings

A ring A is always an associative algebra over its center, and over the integers. A classical example of an algebra over its center is the split-biquaternion algebra, which is isomorphic to , the direct product of two quaternion algebras. The center of that ring is , and hence it has the structure of an algebra over its center, which is not a field. Note that the split-biquaternion algebra is also naturally an 8-dimensional -algebra.

In commutative algebra, if A is a commutative ring, then any unital ring homomorphism defines an R-module structure on A, and this is what is known as the R-algebra structure.[5] So a ring comes with a natural -module structure, since one can take the unique homomorphism .[6] On the other hand, not all rings can be given the structure of an algebra over a field (for example the integers). See Field with one element for a description of an attempt to give to every ring a structure that behaves like an algebra over a field.

See also

Notes

  1. ^ See also Hazewinkel, Gubareni & Kirichenko 2004, p. 3 Proposition 1.1.1
  2. ^ Prolla, João B. (2011) [1977]. "Lemma 4.10". Approximation of Vector Valued Functions. Elsevier. p. 65. ISBN 978-0-08-087136-3.
  3. ^ Schafer, Richard D. (1996). An Introduction to Nonassociative Algebras. ISBN 0-486-68813-5.
  4. ^ Study, E. (1890), "Über Systeme complexer Zahlen und ihre Anwendungen in der Theorie der Transformationsgruppen", Monatshefte für Mathematik, 1 (1): 283–354, doi:10.1007/BF01692479, S2CID 121426669
  5. ^ Matsumura, H. (1989). Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Vol. 8. Translated by Reid, M. (2nd ed.). Cambridge University Press. ISBN 978-0-521-36764-6.
  6. ^ Kunz, Ernst (1985). Introduction to Commutative algebra and algebraic geometry. Birkhauser. ISBN 0-8176-3065-1.

References

Read other articles:

Dalem Adipati Tanumaja adalah bupati Sumedang Larang ke 7 tahun 1706 – 1709, setelah wafat ayahnya Rangga Gempol III atau dikenal juga sebagai Pangeran Panembahan digantikan oleh putranya Raden Tanumaja dengan gelar Adipati, bupati pertama kali yang diangkat oleh V.O.C. Pengangkatannya pun disertai syarat, yaitu harus menempuh masa percobaan, kesetiaan dan ketaatan Raden Tanumadja terhadap pemerintah kompeni dan Pangeran Aria Cirebon sebagai atasannya karena Pangeran Aria Cirebon diangkat menj…

Untuk kegunaan lain, lihat Gen Si Kaki Ayam (disambiguasi). Gen Si Kaki AyamVolume pertama Jepang asli dari Barefoot Gen.はだしのゲン(Hadashi no Gen)GenreDrama, Anti-perang MangaPengarangKeiji NakazawaPenerbitShueisha, Chuokoron-ShinshaPenerbit bahasa Inggris Educomics, New Society Publishers, Last GaspMajalahShōnen Jump MingguanDemografiShōnenTerbit4 Juni 1973 – 1974Volume10 NovelHadashi no Gen wa Pikadon wo wasurenai(Gen Si Kaki Ayam tidak akan pernah melupakan serangan bom tersebut)…

انفانتا أنتونيا من البرتغال (بالبرتغالية: Antonia Maria de Bragança e Saxe-Coburgo-Gotha, Infanta de Portugal; Antonia Maria Fernanda Micaela Gabriela Rafaela Francisca de Assis Ana Gonzaga Silveria Julia Augusta de Bragança e Saxe-Coburgo-Gotha)‏    معلومات شخصية الميلاد 17 فبراير 1845[1]  لشبونة،  وقصر بيليم  الوفاة 27 ديسمبر 1913 (68 سنة)   زيغمارينغن&…

Alexander GouldAlexander Gould pada bulan Oktober 2009LahirAlexander Jerome GouldPekerjaanaktorTahun aktif2000-sekarang Alexander Jerome Gould (lahir 4 Mei 1994) adalah aktor dari Amerika Serikat. Alexander Gould mengisi suara tokoh Nemo dalam film Finding Nemo. Filmografi Tahun Judul Peran Catatan lainnya 2000 Freaks and Geeks Ronnie TV seriesChokin' and Tokin Malcolm in the Middle Egg TV seriesFuneral The Geena Davis Show Sam TV seriesCooties Mexico City Peter Cobb TV film 2001 Ally McBea…

Kerajaan Armenia KilikiaԿիլիկիոյ Հայոց Թագաւորութիւն1198–1375 Bendera Lambang StatusProtektorat Kekaisaran Mongol dan kemudian Ilkhanat (1245-1335)Ibu kotaSisBahasa yang umum digunakanArmenia, Latin, Prancis Kuno, Yunani, Suryani, JermanAgama Gereja Apostolik ArmeniaPemerintahanMonarkiEra SejarahAbad Pertengahan• Levon I menjadi Raja Armenia Kilikia pertama 6 Januari 1198• Menjadi negara pembayar upeti orang-orang Mongol 1236• Sis ditaklukkan…

كوف نيك     الإحداثيات 40°52′40″N 73°29′50″W / 40.8778°N 73.4972°W / 40.8778; -73.4972  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ناسو  خصائص جغرافية  المساحة 4.050007 كيلومتر مربع4.050006 كيلومتر مربع (1 أبريل 2010)  ارتفاع 7 متر  عدد السكان …

Natrium bis(trimetilsilil)amida Nama Nama IUPAC Natrium bis(trimetilsilil)amida Nama lain natrium heksametildisilazana,natrium heksametildisilazida,NaHMDS Penanda Nomor CAS 1070-89-9 3DMet {{{3DMet}}} Nomor EC Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID5061451 Sifat Rumus kimia C6H18NNaSi2 Massa molar 183,37 g/mol Penampilan zat padat berwarna keputihan Densitas 0,9 g/cm3, padat Titik lebur 171-175 °C (kira-kira 446 K) Titik didih 170 °C/2 mm…

The Northwest TerritoriesCurrent seriesSloganSpectacular Northwest TerritoriesMaterialAluminumSerial format123456IntroducedJuly 1, 2010 (2010-07-01)AvailabilityIssued byRegistrar of Motor Vehicles, Government of the Northwest TerritoriesHistoryFirst issued1941 (1941)vte The Canadian territory of Northwest Territories first required its residents to register their motor vehicles and display licence plates in 1941. As of 2022[update], plates are issued by the Northwest …

American politician (born 1984) Rob McColleyMajority Leader of the Ohio SenateIncumbentAssumed office January 3, 2023Preceded byKirk SchuringMember of the Ohio Senatefrom the 1st districtIncumbentAssumed office December 5, 2017Preceded byCliff HiteMember of the Ohio House of Representativesfrom the 81st districtIn officeJanuary 3, 2017 – December 5, 2017Preceded byLynn WachtmannSucceeded byJim Hoops Personal detailsBorn (1984-10-14) October 14, 1984 (age 39)Po…

El Texano Jr.Texano Jr. en novembre 2017Données généralesNom de naissance Juan Aguilar LeosNom de ring El Texano Jr.TexanoKempo KidNationalité mexicainNaissance 31 juillet 1984 (39 ans)Mexicali, Baja California, État de MexicoTaille 6′ 1″ (1,85 m)Poids 220 lb (100 kg)Catcheur en activitéFédération Asistencia Asesoría y AdministraciónEntraîneur El TexanoEl SatánicoShockerCarrière pro. Février 1999 - aujourd'huimodifier - modifier le code - modifier Wikid…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

2 Tawarikh 26Kitab Tawarikh (Kitab 1 & 2 Tawarikh) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 TawarikhKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen14← pasal 25 pasal 27 → 2 Tawarikh 26 (atau II Tawarikh 26, disingkat 2Taw 26) adalah pasal kedua puluh enam Kitab 2 Tawarikh dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk dalam bagian Ketuvim (כְּתוּבִים, tulisan).[1] Pasa…

Laguna di StettinoLa laguna di Stettino fotografata dal satellite Landsat.Stati Polonia Germania Coordinate53°48′16″N 14°08′25″E / 53.804444°N 14.140278°E53.804444; 14.140278Coordinate: 53°48′16″N 14°08′25″E / 53.804444°N 14.140278°E53.804444; 14.140278 Altitudine000 m s.l.m. DimensioniSuperficie903 km² Lunghezza52 km Larghezza22 km Profondità massima8,50 m Profondità media3,80 m Volume2,58 km…

Keuskupan TakamatsuDioecesis Takamatsuensisカトリック高松教区Katedral TakamatsuLokasiNegara JepangProvinsi gerejawiOsaka 大阪MetropolitOsaka 大阪StatistikLuas18.000 km2 (6.900 sq mi)Populasi- Total- Katolik(per 2010)4.058.7524,910 (0.1%)InformasiRitusRitus LatinKatedralKatedral Kabar Baik di Takamatsu, KagawaKepemimpinan kiniPausFransiskusUskupYohanes Rasul Eijiro SuwaUskup agungLeo Jun IkenagaEmeritusFrancis Xavier Osamu Mizobe Uskup Emeritus…

Sebuah Wantilan di Pura Taman Ayun, dengan daerah pusat yang diturunkan untuk panggung yang digunakan untuk mengadakan upacara sabung ayam Wantilan adalah sebuah paviliun Bali (bale) yang digunakan untuk kegiatan yang melibatkan banyak orang. Wantilan adalah jenis bale terbesar dalam arsitektur Bali. Sebuah wantilan pada dasarnya merupakan sebuah balai tanpa dinding besar yang ditempatkan di bawah atap bertingkat besar. Sebagai bangunan umum, wantilan biasanya terletak di persimpangan lapangan a…

American politician and military officer (1909–1998) Goldwater redirects here. For other uses, see Goldwater (disambiguation). This article is about the United States Senator and Presidential nominee. For his son, see Barry Goldwater Jr. Barry GoldwaterSenate portrait, 1960United States Senatorfrom ArizonaIn officeJanuary 3, 1969 – January 3, 1987Preceded byCarl HaydenSucceeded byJohn McCainIn officeJanuary 3, 1953 – January 3, 1965Preceded byErnest McFarlandSucceeded byP…

Month of 1937 1937 January February March April May June July August September October November December << March 1937 >> Su Mo Tu We Th Fr Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31   March 20, 1937: Amelia Earhart escapes injury in Honolulu plane crash The following events occurred in March 1937: March 1, 1937 (Monday) Kyösti Kallio became 4th President of Finland. The Camp of National Unity was founded in Poland.[1]…

Mathematical concept This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (October 2018) (Learn how and when to remove this message) In mathematics, a plane curve is a curve in a plane that may be a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise s…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Li Hejun (lahir di Xiantangzhen, Heyuan, Tiongkok, Agustus 1967 ;umur 53) adalah seorang pengusaha yang berasal dari negara Tiongkok. Ia adalah pemimpin sekaligus CEO Hanergy Holdings Group Limited. Hanergy merupakan perusahaan yang didirikan pada tahun …

American basketball coach (born 1979) This article is about the basketball coach and former player. For the active basketball player, see Earl Watson (basketball, born 1990). Earl WatsonWatson with the Indiana Pacers in 2009Personal informationBorn (1979-06-12) June 12, 1979 (age 44)Kansas City, Kansas, U.S.NationalityAmericanListed height6 ft 1 in (1.85 m)Listed weight199 lb (90 kg)Career informationHigh schoolWashington (Kansas City, Kansas)CollegeUCLA (1997–200…

Kembali kehalaman sebelumnya