Isometry

A composition of two opposite isometries is a direct isometry. A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion.[1]

In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.[a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

Introduction

Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry;[b] the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection.

Isometries are often used in constructions where one space is embedded in another space. For instance, the completion of a metric space involves an isometry from into a quotient set of the space of Cauchy sequences on The original space is thus isometrically isomorphic to a subspace of a complete metric space, and it is usually identified with this subspace. Other embedding constructions show that every metric space is isometrically isomorphic to a closed subset of some normed vector space and that every complete metric space is isometrically isomorphic to a closed subset of some Banach space.

An isometric surjective linear operator on a Hilbert space is called a unitary operator.

Definition

Let and be metric spaces with metrics (e.g., distances) and A map is called an isometry or distance preserving map if for any one has

[4][c]

An isometry is automatically injective;[a] otherwise two distinct points, a and b, could be mapped to the same point, thereby contradicting the coincidence axiom of the metric d, i.e., if and only if . This proof is similar to the proof that an order embedding between partially ordered sets is injective. Clearly, every isometry between metric spaces is a topological embedding.

A global isometry, isometric isomorphism or congruence mapping is a bijective isometry. Like any other bijection, a global isometry has a function inverse. The inverse of a global isometry is also a global isometry.

Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y. The set of bijective isometries from a metric space to itself forms a group with respect to function composition, called the isometry group.

There is also the weaker notion of path isometry or arcwise isometry:

A path isometry or arcwise isometry is a map which preserves the lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective. This term is often abridged to simply isometry, so one should take care to determine from context which type is intended.

Examples

Isometries between normed spaces

The following theorem is due to Mazur and Ulam.

Definition:[5] The midpoint of two elements x and y in a vector space is the vector 1/2(x + y).

Theorem[5][6] — Let A : XY be a surjective isometry between normed spaces that maps 0 to 0 (Stefan Banach called such maps rotations) where note that A is not assumed to be a linear isometry. Then A maps midpoints to midpoints and is linear as a map over the real numbers . If X and Y are complex vector spaces then A may fail to be linear as a map over .

Linear isometry

Given two normed vector spaces and a linear isometry is a linear map that preserves the norms:

for all [7] Linear isometries are distance-preserving maps in the above sense. They are global isometries if and only if they are surjective.

In an inner product space, the above definition reduces to

for all which is equivalent to saying that This also implies that isometries preserve inner products, as

Linear isometries are not always unitary operators, though, as those require additionally that and

By the Mazur–Ulam theorem, any isometry of normed vector spaces over is affine.

A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a conformal linear transformation.

Examples

Manifold

An isometry of a manifold is any (smooth) mapping of that manifold into itself, or into another manifold that preserves the notion of distance between points. The definition of an isometry requires the notion of a metric on the manifold; a manifold with a (positive-definite) metric is a Riemannian manifold, one with an indefinite metric is a pseudo-Riemannian manifold. Thus, isometries are studied in Riemannian geometry.

A local isometry from one (pseudo-)Riemannian manifold to another is a map which pulls back the metric tensor on the second manifold to the metric tensor on the first. When such a map is also a diffeomorphism, such a map is called an isometry (or isometric isomorphism), and provides a notion of isomorphism ("sameness") in the category Rm of Riemannian manifolds.

Definition

Let and be two (pseudo-)Riemannian manifolds, and let be a diffeomorphism. Then is called an isometry (or isometric isomorphism) if

where denotes the pullback of the rank (0, 2) metric tensor by . Equivalently, in terms of the pushforward we have that for any two vector fields on (i.e. sections of the tangent bundle ),

If is a local diffeomorphism such that then is called a local isometry.

Properties

A collection of isometries typically form a group, the isometry group. When the group is a continuous group, the infinitesimal generators of the group are the Killing vector fields.

The Myers–Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth (differentiable). A second form of this theorem states that the isometry group of a Riemannian manifold is a Lie group.

Riemannian manifolds that have isometries defined at every point are called symmetric spaces.

Generalizations

  • Given a positive real number ε, an ε-isometry or almost isometry (also called a Hausdorff approximation) is a map between metric spaces such that
    1. for one has and
    2. for any point there exists a point with
That is, an ε-isometry preserves distances to within ε and leaves no element of the codomain further than ε away from the image of an element of the domain. Note that ε-isometries are not assumed to be continuous.
  • The restricted isometry property characterizes nearly isometric matrices for sparse vectors.
  • Quasi-isometry is yet another useful generalization.
  • One may also define an element in an abstract unital C*-algebra to be an isometry:
    is an isometry if and only if
Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse.

See also

Footnotes

  1. ^ a b "We shall find it convenient to use the word transformation in the special sense of a one-to-one correspondence among all points in the plane (or in space), that is, a rule for associating pairs of points, with the understanding that each pair has a first member P and a second member P' and that every point occurs as the first member of just one pair and also as the second member of just one pair...
    In particular, an isometry (or "congruent transformation," or "congruence") is a transformation which preserves length ..." — Coxeter (1969) p. 29[2]
  2. ^

    3.11 Any two congruent triangles are related by a unique isometry.— Coxeter (1969) p. 39[3]

  3. ^
    Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.[4]

References

  1. ^ Coxeter 1969, p. 46

    3.51 Any direct isometry is either a translation or a rotation. Any opposite isometry is either a reflection or a glide reflection.

  2. ^ Coxeter 1969, p. 29
  3. ^ Coxeter 1969, p. 39
  4. ^ a b Beckman, F.S.; Quarles, D.A. Jr. (1953). "On isometries of Euclidean spaces" (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415. JSTOR 2032415. MR 0058193.
  5. ^ a b Narici & Beckenstein 2011, pp. 275–339.
  6. ^ Wilansky 2013, pp. 21–26.
  7. ^ Thomsen, Jesper Funch (2017). Lineær algebra [Linear Algebra]. Department of Mathematics (in Danish). Århus: Aarhus University. p. 125.
  8. ^ Roweis, S.T.; Saul, L.K. (2000). "Nonlinear dimensionality reduction by locally linear embedding". Science. 290 (5500): 2323–2326. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150.
  9. ^ Saul, Lawrence K.; Roweis, Sam T. (June 2003). "Think globally, fit locally: Unsupervised learning of nonlinear manifolds". Journal of Machine Learning Research. 4 (June): 119–155. Quadratic optimisation of (page 135) such that
  10. ^ Zhang, Zhenyue; Zha, Hongyuan (2004). "Principal manifolds and nonlinear dimension reduction via local tangent space alignment". SIAM Journal on Scientific Computing. 26 (1): 313–338. CiteSeerX 10.1.1.211.9957. doi:10.1137/s1064827502419154.
  11. ^ Zhang, Zhenyue; Wang, Jing (2006). "MLLE: Modified locally linear embedding using multiple weights". In Schölkopf, B.; Platt, J.; Hoffman, T. (eds.). Advances in Neural Information Processing Systems. NIPS 2006. NeurIPS Proceedings. Vol. 19. pp. 1593–1600. ISBN 9781622760381. It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold.

Bibliography

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Dmitri AgaptsevInformasi pribadiNama lengkap Dmitri Alekseyevich AgaptsevTanggal lahir 29 November 1991 (umur 32)Tinggi 1,80 m (5 ft 11 in)Posisi bermain PenyerangInformasi klubKlub saat ini Tidak adaKarier senior*Tahun Tim Tampil (Go…

Azerbaijani historian and academic (1923–1997) Ziya BunyadovBorn21 December 1921Astara, Transcaucasian SFSR, Soviet UnionDied21 February 1997(1997-02-21) (aged 75)Baku, AzerbaijanAllegiance Soviet UnionYears of service1942–1945AwardsHero of the Soviet UnionOrder of LeninOrder of the October RevolutionOrder of the Red BannerOrder of the Patriotic WarMedal For Courage Ziya Musa oglu Bunyadov (Azerbaijani: Ziya Musa oğlu Bünyadov sometimes spelled in English as Zia Buniatov or …

Untuk tokoh ini dalam sudut pandang Islam, lihat Hajar. Hagarهاجر • הָגָרExpulsion of Ishmael and His Mother (Pengusiran Ismael dan ibunya), karya Gustave DoréLahir~ 2000 SMMesirMeninggalPadang gurun ParanNama lainHajarAnakIsmael Hagar (bahasa Ibrani: הָגָר, Modern Hagar Tiberias Hāgār;[1] bahasa Yunani: Ἄγαρ Agar; Latin: Agarcode: la is deprecated ) adalah tokoh dalam agama Abrahamik. Ia adalah hamba perempuan Sara, yang kemudian diberikan oleh…

Swindon Town 2011–12 football seasonSwindon Town2011–12 seasonChairmanJeremy WrayManagerPaolo Di CanioGroundCounty Ground, SwindonLeague Two1st (champions)FA Cup4th RoundLeague Cup2nd RoundFL TrophyRunners-upTop goalscorerLeague: Paul Benson (12)Alan Connell (12)All: Alan Connell (13)Highest home attendance13,238 vs. Wigan Athletic, 8 January 2012Lowest home attendance4,329 vs AFC Wimbledon, 8 November 2011 Home colours Away colours Third colours ← 2010–112012–13 → …

Euler beralih ke halaman ini. Untuk kegunaan lain, lihat Euler (disambiguasi). Leonhard EulerLukisan oleh Johann Georg Brucker (1756)Lahir(1707-04-15)15 April 1707Basel, SwitzerlandMeninggal18 September 1783(1783-09-18) (umur 76)[OS: 7 September 1783]St. Petersburg, Kekaisaran RusiaTempat tinggalKerajaan Prusia, Kekaisaran Rusia SwitzerlandKebangsaanSwissAlmamaterUniversitas BaselDikenal atasLihat daftarKarier ilmiahBidangMatematika dan fisikaInstitusiAkademi Ilmu Pengetahuan Imperial Rusia…

Town in Rhode Island, United StatesScituate, Rhode IslandTown SealLocation in Providence County and the state of Rhode Island.Coordinates: 41°47′N 71°37′W / 41.783°N 71.617°W / 41.783; -71.617CountryUnited StatesStateRhode IslandCountyProvidenceIncorporated1731Government • TypeTown commission • Town CouncilTheresa Yeaw (R)David A. D'Agostino (R)Michael Marcello (R)James Brady Jr. (R)Abbie Groves (R)Gary Grande (R)Tim McCormick (R)Area …

Internal Nazi reports on the Holocaust Einsatzgruppen reports Vileyka EG-A EG-B EG-C EG-D Map of the Einsatzgruppen operations with the location of the first shooting of Jewish women and children (along with the men), July 30, 1941. The Jäger Report, December 1, 1941.Incident typeThe Einsatzgruppen shootingsOrganizationsSchutzstaffel (SS) The Einsatzgruppen Operational Situation Reports (OSRs), or ERM for the German: Die Ereignismeldung UdSSR (plural: Ereignismeldungen), were dispatches of the …

Keuskupan PetrolinaDioecesis PetrolinensisKatedral Hati Kudus Yesus Kristus sang RajaLokasiNegaraBrazilProvinsi gerejawiOlinda e RecifeStatistikLuas31.065 km2 (11.994 sq mi)Populasi- Total- Katolik(per 2004)650.000585,000 (90.0%)InformasiRitusRitus LatinPendirian30 November 1923 (100 tahun lalu)KatedralCatedral SS. Coração de Jesus-Cristo ReiKepemimpinan kiniPausFransiskusUskupManoel dos Reis de FariasEmeritusPaulo Cardoso da Silva, O. Carm.PetaSitus webwww.d…

Peninsula in Indonesia Bird's Head redirects here. For the tectonic plate, see Bird's Head Plate. For the languages, see Bird's Head languages. Bird's Head PeninsulaKepala Burung, Doberai PeninsulaBird's Head Peninsula seen from space (false color)Bird's Head PeninsulaShow map of Bird's Head PeninsulaBird's Head PeninsulaShow map of IndonesiaBird's Head PeninsulaShow map of Southeast AsiaGeographyLocationSouthwest Papua and West Papua, IndonesiaCoordinates1°30′S 132°30′E / …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Daftar tokoh Samarinda berikut ini memuat nama tokoh-tokoh yang berasal dari Samarinda baik secara genetis maupun yang menetap, pernah menetap, dan bekerja di Samarinda. Perangkat pemantau ini bisa digunakan untuk melihat perubahan terbaru dari artikel-a…

Questa voce o sezione sull'argomento politici non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sull'argomento politici italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: fonte: http://www.camera.it/leg17/29?shadow_deputato=305802&idpersona=305802&idLegislatura=17 Puoi migliorare questa voce aggiungendo citazioni…

Ne doit pas être confondu avec SC Fribourg (féminines), Fribourg FC ou FC Fribourg. SC Fribourg Généralités Nom complet Sport-Club Freiburg Surnoms Breisgau-Brasilianer(Les brésiliens du Breisgau)[1] Fondation 30 mai 1904 Couleurs Rouge et Blanc [2] Stade Europa-Park-Stadion (34 700 places) Siège Schwarzwaldstraße 193, 79117 Fribourg-en-Brisgau Championnat actuel 1. Bundesliga Président Eberhard Fugmann Entraîneur Christian Streich Joueur le plus capé Andreas Zeyer (441) Mei…

Japanese light novel series Nanana's Buried TreasureFirst light novel volume cover featuring the character Nanana Ryūgajō龍ヶ嬢七々々の埋蔵金GenreSupernatural[1] Light novelWritten byKazuma ŌtorinoIllustrated byAkaringo (vol. 1-7)Non (vol. 8-12)Published byEnterbrainImprintFamitsu BunkoDemographicMaleOriginal runJanuary 30, 2012 – December 28, 2016Volumes12 MangaWritten byKazuma ŌtorinoIllustrated byHitoshi OkudaPublished byEnterbrainMagazine…

Jewish-Russian pianist (1859–1932) Friedheim in 1912 Arthur Friedheim (Russian: Артур Фридхайм, 14/26 October 1859[1] – 19 October 1932) was a Russian-born concert pianist and composer who was one of Franz Liszt's foremost pupils. One of Friedheim's students was Rildia Bee O'Bryan Cliburn, the mother of 20th-century piano virtuoso Van Cliburn. Biography Friedheim was born in Saint Petersburg in 1859. He began serious study of music at age eight. He later studied for…

Elizabeth Christ TrumpLahirElisabeth Christ(1880-10-10)10 Oktober 1880Kallstadt, Kerajaan Bayern, Kekaisaran JermanMeninggal6 Juni 1966(1966-06-06) (umur 85)Manhasset, New York, A.S.KebangsaanJermanWarga negaraAmerika SerikatPekerjaanPengembang propertiSuami/istriFrederick Trump ​ ​(m. 1902; meninggal 1918)​AnakElizabeth, Fred, dan JohnOrang tuaPhilipp Christ, Anna Maria Anthon[1] Elizabeth Christ Trump (lahir Elisabeth Christ; 10 Okto…

United States women's national baseball teamInformationCountryUnited StatesFederationUSA BaseballConfederationCOPABEWBSC rankingCurrent 4 (22 September 2023)[1]Women's World CupAppearances6 (first in 2004)Best result1st (2 times, in 2004 and 2006) The United States women's national baseball team is a national team that represents the United States of America in international women's baseball competitions. It is controlled by USA Baseball and is a member of the Pan American Baseball Confe…

Domenico de' Marinipatriarca della Chiesa cattolico  Incarichi ricoperti Vescovo di Albenga (1611-1616) Arcivescovo metropolita di Genova (1616-1635) Vicecamerlengo della Camera apostolica (1623-1625) Patriarca titolare di Gerusalemme (1627-1635)  Nominato vescovo11 aprile 1611 da papa Paolo V Consacrato vescovo1º maggio 1611 dal vescovo Marcello Crescenzi Elevato arcivescovo18 luglio 1616 da papa Paolo V Elevato patriarca15 novembre 1627 da papa Urbano VIII Decedutofebbraio 1635 a Ge…

Scottish National Party politician The Right HonourableStewart HosieMPOfficial portrait, 2017SNP Treasury Spokesperson in the House of CommonsIn office10 December 2022 – 4 September 2023LeaderStephen FlynnPreceded byAlison ThewlissSucceeded byDrew HendryIn office8 May 2015 – 14 June 2017LeaderAngus RobertsonPreceded byOffice establishedSucceeded byKirsty BlackmanSNP Shadow Chancellor of the Duchy of LancasterShadow Minister for the Cabinet OfficeIn office1 February 2021…

Triazolobenzodiazepine tranquilizer drug EstazolamClinical dataTrade namesProsom, Esilgan, Eurodin, Nuctalon, othersOther namesDesmethylalprazolamAHFS/Drugs.comMonographMedlinePlusa691003License data US DailyMed: Estazolam Routes ofadministrationBy mouthATC codeN05CD04 (WHO) Legal statusLegal status BR: Class B1 (Psychoactive drugs)[2] CA: Schedule IV DE: Prescription only (Anlage III for higher doses) UK: Class C US: WARNING[1]Schedul…

Para kepala negara anggota APEC mengenakan durumagi saat Pertemuan APEC di Korea Selatan, tahun 2005. Durumagi (두루마기) adalah jenis pakaian luar yang dikenakan orang Korea sebagai jubah dari hanbok.[1] Durumagi tampak serupa dengan jeogori, tetapi ukurannya memanjang sampai lutut dan lengan serta kerahnya lebih lebar.[1] Sejarahnya, pakaian ini telah dikenakan oleh wanita dan pria sejak lama, seperti yang terlukis di dinding makam kuno Tiga Kerajaan Korea (37 SM-668 M). …

Kembali kehalaman sebelumnya