Laurent series

A Laurent series is defined with respect to a particular point and a path of integration γ. The path of integration must lie in an annulus, indicated here by the red color, inside which is holomorphic (analytic).

In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.[1]

Definition

The Laurent series for a complex function about a point is given by where and are constants, with defined by a contour integral that generalizes Cauchy's integral formula:

The path of integration is counterclockwise around a Jordan curve enclosing and lying in an annulus in which is holomorphic (analytic). The expansion for will then be valid anywhere inside the annulus. The annulus is shown in red in the figure on the right, along with an example of a suitable path of integration labeled . If we take to be a circle , where , this just amounts to computing the complex Fourier coefficients of the restriction of to . The fact that these integrals are unchanged by a deformation of the contour is an immediate consequence of Green's theorem.

One may also obtain the Laurent series for a complex function at . However, this is the same as when (see the example below).

In practice, the above integral formula may not offer the most practical method for computing the coefficients for a given function ; instead, one often pieces together the Laurent series by combining known Taylor expansions. Because the Laurent expansion of a function is unique whenever it exists, any expression of this form that equals the given function in some annulus must actually be the Laurent expansion of .

Convergent Laurent series

e−1/x2 and Laurent approximations: see text for key. As the negative degree of the Laurent series rises, it approaches the correct function.
e−1/x2 and its Laurent approximations with the negative degree rising. The neighborhood around the zero singularity can never be approximated.

Laurent series with complex coefficients are an important tool in complex analysis, especially to investigate the behavior of functions near singularities.

Consider for instance the function with . As a real function, it is infinitely differentiable everywhere; as a complex function however it is not differentiable at . By replacing with in the power series for the exponential function, we obtain its Laurent series which converges and is equal to for all complex numbers except at the singularity . The graph opposite shows in black and its Laurent approximations for = 1, 2, 3, 4, 5, 6, 7 and 50. As , the approximation becomes exact for all (complex) numbers except at the singularity .

More generally, Laurent series can be used to express holomorphic functions defined on an annulus, much as power series are used to express holomorphic functions defined on a disc.

Suppose is a given Laurent series with complex coefficients and a complex center . Then there exists a unique inner radius and outer radius such that:

  • The Laurent series converges on the open annulus . To say that the Laurent series converges, we mean that both the positive degree power series and the negative degree power series converge. Furthermore, this convergence will be uniform on compact sets. Finally, the convergent series defines a holomorphic function on the open annulus.
  • Outside the annulus, the Laurent series diverges. That is, at each point of the exterior of , the positive degree power series or the negative degree power series diverges.
  • On the boundary of the annulus, one cannot make a general statement, except to say that there is at least one point on the inner boundary and one point on the outer boundary such that cannot be holomorphically continued to those points.

It is possible that may be zero or may be infinite; at the other extreme, it's not necessarily true that is less than . These radii can be computed as follows:

We take to be infinite when this latter lim sup is zero.

Conversely, if we start with an annulus of the form and a holomorphic function defined on , then there always exists a unique Laurent series with center which converges (at least) on and represents the function .

As an example, consider the following rational function, along with its partial fraction expansion:

This function has singularities at and , where the denominator of the expression is zero and the expression is therefore undefined. A Taylor series about (which yields a power series) will only converge in a disc of radius 1, since it "hits" the singularity at 1.

However, there are three possible Laurent expansions about 0, depending on the radius of :

  • One series is defined on the inner disc where |z| < 1; it is the same as the Taylor series, This follows from the partial fraction form of the function, along with the formula for the sum of a geometric series, for .
  • The second series is defined on the middle annulus where is caught between the two singularities: Here, we use the alternative form of the geometric series summation, for .
  • The third series is defined on the infinite outer annulus where , (which is also the Laurent expansion at ) This series can be derived using geometric series as before, or by performing polynomial long division of 1 by , not stopping with a remainder but continuing into terms; indeed, the "outer" Laurent series of a rational function is analogous to the decimal form of a fraction. (The "inner" Taylor series expansion can be obtained similarly, just reversing the term order in the division algorithm.)

The case ; i.e., a holomorphic function which may be undefined at a single point , is especially important. The coefficient of the Laurent expansion of such a function is called the residue of at the singularity ; it plays a prominent role in the residue theorem. For an example of this, consider

This function is holomorphic everywhere except at .

To determine the Laurent expansion about , we use our knowledge of the Taylor series of the exponential function:

We find that the residue is 2.

One example for expanding about :

Uniqueness

Suppose a function holomorphic on the annulus has two Laurent series:

Multiply both sides by , where k is an arbitrary integer, and integrate on a path γ inside the annulus,

The series converges uniformly on , where ε is a positive number small enough for γ to be contained in the constricted closed annulus, so the integration and summation can be interchanged. Substituting the identity into the summation yields

Hence the Laurent series is unique.

Laurent polynomials

A Laurent polynomial is a Laurent series in which only finitely many coefficients are non-zero. Laurent polynomials differ from ordinary polynomials in that they may have terms of negative degree.

Principal part

The principal part of a Laurent series is the series of terms with negative degree, that is

If the principal part of is a finite sum, then has a pole at of order equal to (negative) the degree of the highest term; on the other hand, if has an essential singularity at , the principal part is an infinite sum (meaning it has infinitely many non-zero terms).

If the inner radius of convergence of the Laurent series for is 0, then has an essential singularity at if and only if the principal part is an infinite sum, and has a pole otherwise.

If the inner radius of convergence is positive, may have infinitely many negative terms but still be regular at , as in the example above, in which case it is represented by a different Laurent series in a disk about .

Laurent series with only finitely many negative terms are well-behaved—they are a power series divided by , and can be analyzed similarly—while Laurent series with infinitely many negative terms have complicated behavior on the inner circle of convergence.

Multiplication and sum

Laurent series cannot in general be multiplied. Algebraically, the expression for the terms of the product may involve infinite sums which need not converge (one cannot take the convolution of integer sequences). Geometrically, the two Laurent series may have non-overlapping annuli of convergence.

Two Laurent series with only finitely many negative terms can be multiplied: algebraically, the sums are all finite; geometrically, these have poles at , and inner radius of convergence 0, so they both converge on an overlapping annulus.

Thus when defining formal Laurent series, one requires Laurent series with only finitely many negative terms.

Similarly, the sum of two convergent Laurent series need not converge, though it is always defined formally, but the sum of two bounded below Laurent series (or any Laurent series on a punctured disk) has a non-empty annulus of convergence.

Also, for a field , by the sum and multiplication defined above, formal Laurent series would form a field which is also the field of fractions of the ring of formal power series.

See also

References

  1. ^ Rodriguez, Rubi; Kra, Irwin; Gilman, Jane P. (2012), Complex Analysis: In the Spirit of Lipman Bers, Graduate Texts in Mathematics, vol. 245, Springer, p. 12, ISBN 9781441973238.

Read other articles:

Untuk yogi, lihat Bhagavan Das (yogi). Bhagwan DasLahir(1869-01-12)12 Januari 1869Varanasi, Provinsi-Provinsi Serikat, Kemaharajaan BritaniaMeninggal18 September 1958(1958-09-18) (umur 89)PenghargaanBharat Ratna Bhagwan Das (12 Januari 1869 – 18 September 1958) adalah seorang Teosofis dan tokoh masyarakat India. Pada masanya, ia menjabat dalam Majelis Legislatif Pusat India Britania. Ia menjadi beraliansi dengan Serikat Budaya Hindustani dan aktif dalam perlawanan pemberontakan sebagai ba…

This is an overview of the regular, recurring, and other characters of the TV series The Last Ship. Overview Character Portrayed by Occupation Seasons 1 2 3 4 5 Tom Chandler Eric Dane Commanding Officer, USS Nathan James Chief of Naval Operations US Naval Academy Instructor Main Rachel Scott Rhona Mitra Paleomicrobiologist Main — Mike Slattery Adam Baldwin Executive Officer, USS Nathan James Commanding Officer, USS Nathan James Main Russ Jeter Charles Parnell Command Master Chief Petty Officer…

Indian Urdu language poet, author, critic, and theorist (1935–2020) This article is about the Indian Urdu poet. For the Bangladeshi Bengali poet, see Shamsur Rahman (poet). Shamsur Rahman FaruqiBornShamsur Rahman Faruqi30 September 1935Pratapgarh, United Provinces, British India (now in Uttar Pradesh, India)Died25 December 2020(2020-12-25) (aged 85)Allahabad, Uttar Pradesh, IndiaResting placeAshok Nagar, Allahabad, beside his wifeOccupationPoet, criticLanguageUrduNationalityIndianAlma…

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Jusuf Kalla Wakil Presiden Indonesia ke-10 dan ke-12Masa jabatan20 Oktober 2014&…

سفارة أوكرانيا في سلوفينيا أوكرانيا سلوفينيا الإحداثيات 46°02′23″N 14°30′06″E / 46.03975°N 14.501583333333°E / 46.03975; 14.501583333333 البلد سلوفينيا  المكان ليوبليانا الاختصاص سلوفينيا  الموقع الالكتروني الموقع الرسمي تعديل مصدري - تعديل   سفارة أوكرانيا في سلوفينيا هي أرفع تمث…

École nationale supérieure des mines de Saint-ÉtienneMines Saint-ÉtienneHistoireFondation 2 août 1816 (207 ans)StatutType École d'ingénieurs interne de l'Institut Mines-TélécomFondateur Louis XVIIIPrésident Dominique PoirouxDirecteur Jacques FayolleDevise Inspiring Innovation - Innovante par tradition Ancienne devise : Operta Naturae Inveniunt Munera - Ils mettent à jour les œuvres cachées de la NatureMembre de Institut Mines-Télécom, Groupe des écoles des mines, CGE, C…

العلاقات الصومالية المدغشقرية الصومال مدغشقر   الصومال   مدغشقر تعديل مصدري - تعديل   العلاقات الصومالية المدغشقرية هي العلاقات الثنائية التي تجمع بين الصومال ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا…

Gloucestershire County Council election 2021 Gloucestershire County Council election ← 2017 6 May 2021 (2021-05-06) 2025 → All 53 seats to Gloucestershire County Council27 seats needed for a majority   First party Second party   Party Conservative Liberal Democrats Last election 31 seats, 45.1% 14 seats, 27.4% Seats won 28 16 Seat change 3 2 Popular vote 87,833 49,528 Percentage 43.9% 24.8% Swing 1.2% 2.6%   Third party Four…

Cet article est une ébauche concernant les Vosges et le climat. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Le climat du département des Vosges est un climat océanique avec une influence semi-continentale à l'ouest, et un climat montagnard à l'est du département dans le Massif des Vosges. Climat La ferme de Schmargult à La Bresse (vue historique). En hiver, le climat est très rude, les températures peuv…

483rd Tactical Airlift WingTong 725, a C-7A Caribou of the 535th Tactical Airlift Squadron, October 1971Active1953–1960, 1966–1972Country United StatesBranch United States Air ForceRoleAirliftPart ofPacific Air ForcesMotto(s)Efficient Airlift SupportEngagementsKorean ServiceVietnam ServiceDecorationsPresidential Unit CitationAir Force Outstanding Unit AwardKorean Presidential Unit CitationGallantry Cross (Vietnam)InsigniaPatch with 483rd Tactical Airlift Wing emblem (approved …

Численность населения Эстонии по состоянию на 1 января 2024 года составляла 1 366 491 человек, что на 4,4 % больше, чем в 2023 году[1]. На 1 января 2023 года численность населения Эстонии составляла 1 365 884 человека, доля эстонцев (за вычетом лиц неустановленной нацио…

Pour les articles homonymes, voir Hamilton. Ne doit pas être confondu avec Gawen Hamilton. Cet article est une ébauche concernant un peintre britannique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Gavin HamiltonVénus accordant, à Pâris, Hélène pour épouse par Gavin Hamilton (1782-84)Naissance 1723LanarkshireDécès 4 janvier 1798RomeNationalité britanniqueActivités Anthropologue, archéologue, histori…

Voce principale: Associazione Calcio Monopoli. Associazione Calcio MonopoliStagione 1978-1979Sport calcio Squadra Monopoli Allenatore Roberto Giliberti poi Luigi Menti poi Roberto Giliberti Presidente Nicola Petrosillo Serie C213º posto nel girone C. Maggiori presenzeCampionato: Barbieri (34) Miglior marcatoreCampionato: Manari (7) 1977-1978 1979-1980 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Calcio Monopoli nelle competizioni…

SomagliaKomuneComune di SomagliaNegaraItaliaWilayahLombardyProvinsiProvinsi Lodi (LO)FrazioniSan Martino PizzolanoLuas • Total20,9 km2 (81 sq mi)Ketinggian57 m (187 ft)Populasi (Dec. 2004) • Total3.384 • Kepadatan16/km2 (42/sq mi)DemonimSomagliesiZona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos26867Kode area telepon0377Situs webSitus web resmi Somaglia adalah komune yang terletak di distrik Provinsi L…

Species of passerine bird Palestine sunbird Male Female, both C. o. oseaDana Biosphere Reserve, Jordan Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: Nectariniidae Genus: Cinnyris Species: C. osea Binomial name Cinnyris oseaBonaparte, 1856 Synonyms Cinnyris oseusNectarinia osea The Palestine sunbird (Cinnyris osea) is a small passerine bird of the sunbird fa…

American businessman and politician (1799–1889) Simon CameronCameron, c. 1860–1870United States Senatorfrom PennsylvaniaIn officeMarch 4, 1867 – March 12, 1877Preceded byEdgar CowanSucceeded byJ. Donald CameronIn officeMarch 4, 1857 – March 4, 1861Preceded byRichard BrodheadSucceeded byDavid WilmotIn officeMarch 13, 1845 – March 3, 1849Preceded byJames BuchananSucceeded byJames CooperUnited States Minister to RussiaIn officeJune 25, 1862 – Septembe…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Shot Pushkin – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) The Belkin Tales cover The Shot (Выстрел) is a short story by Aleksandr Pushkin published in 1831. It is the first story in Pushkin's…

Part of a series onDiscrimination Forms Institutional Structural Statistical Taste-based Attributes Age Caste Class Dialect Disability Genetic Hair texture Height Language Looks Mental disorder Race / Ethnicity Skin color Scientific racism Rank Sex Sexual orientation Species Size Viewpoint Social Arophobia Acephobia Adultism Anti-albinism Anti-autism Anti-homelessness Anti-drug addicts Anti-intellectualism Anti-intersex Anti-left handedness Anti-Masonry Antisemitism Aporophobia Audism B…

Dialect of the English language Saesneg redirects here. For the language called Welsh, see Welsh language. Welsh EnglishNative toUnited KingdomRegionWalesNative speakers(undated figure of 2.5 million[citation needed])Language familyIndo-European GermanicWest GermanicIngvaeonicAnglo-FrisianAnglicEnglishBritish EnglishWelsh EnglishEarly formsOld English Middle English Early Modern English Writing systemLatin (English alphabet)Language codesISO 639-3–GlottologNoneThis article contain…

ChéronvillierscomuneChéronvilliers – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementÉvreux CantoneBreteuil TerritorioCoordinate48°47′N 0°44′E / 48.783333°N 0.733333°E48.783333; 0.733333 (Chéronvilliers)Coordinate: 48°47′N 0°44′E / 48.783333°N 0.733333°E48.783333; 0.733333 (Chéronvilliers) Superficie20,94 km² Abitanti516[1] (2009) Densità24,64 ab./km² Altre informazioniCo…

Kembali kehalaman sebelumnya