Moufang loop

In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang (1935). Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.

Definition

A Moufang loop is a loop that satisfies the four following equivalent identities for all , , in (the binary operation in is denoted by juxtaposition):

These identities are known as Moufang identities.

Examples

  • Any group is an associative loop and therefore a Moufang loop.
  • The nonzero octonions form a nonassociative Moufang loop under octonion multiplication.
  • The subset of unit norm octonions (forming a 7-sphere in O) is closed under multiplication and therefore forms a Moufang loop.
  • The subset of unit norm integral octonions is a finite Moufang loop of order 240.
  • The basis octonions and their additive inverses form a finite Moufang loop of order 16.
  • The set of invertible split-octonions forms a nonassociative Moufang loop, as does the set of unit norm split-octonions. More generally, the set of invertible elements in any octonion algebra over a field F forms a Moufang loop, as does the subset of unit norm elements.
  • The set of all invertible elements in an alternative ring R forms a Moufang loop called the loop of units in R.
  • For any field F let M(F) denote the Moufang loop of unit norm elements in the (unique) split-octonion algebra over F. Let Z denote the center of M(F). If the characteristic of F is 2 then Z = {e}, otherwise Z = {±e}. The Paige loop over F is the loop M*(F) = M(F)/Z. Paige loops are nonassociative simple Moufang loops. All finite nonassociative simple Moufang loops are Paige loops over finite fields. The smallest Paige loop M*(2) has order 120.
  • A large class of nonassociative Moufang loops can be constructed as follows. Let G be an arbitrary group. Define a new element u not in G and let M(G,2) = G ∪ (G u). The product in M(G,2) is given by the usual product of elements in G together with and
It follows that and . With the above product M(G,2) is a Moufang loop. It is associative if and only if G is abelian.
  • The smallest nonassociative Moufang loop is M(S3, 2) which has order 12.
  • Richard A. Parker constructed a Moufang loop of order 213, which was used by Conway in his construction of the monster group. Parker's loop has a center of order 2 with elements denoted by 1, −1, and the quotient by the center is an elementary abelian group of order 212, identified with the binary Golay code. The loop is then defined up to isomorphism by the equations
    A2 = (−1)|A|/4
    BA = (−1)|AB|/2AB
    A(BC)= (−1)|ABC|(AB)C
where |A| is the number of elements of the code word A, and so on. For more details see Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England.

Properties

Associativity

Moufang loops differ from groups in that they need not be associative. A Moufang loop that is associative is a group. The Moufang identities may be viewed as weaker forms of associativity.

By setting various elements to the identity, the Moufang identities imply

Moufang's theorem states that when three elements x, y, and z in a Moufang loop obey the associative law: (xy)z = x(yz) then they generate an associative subloop; that is, a group. A corollary of this is that all Moufang loops are di-associative (i.e. the subloop generated by any two elements of a Moufang loop is associative and therefore a group). In particular, Moufang loops are power associative, so that powers xn are well-defined. When working with Moufang loops, it is common to drop the parenthesis in expressions with only two distinct elements. For example, the Moufang identities may be written unambiguously as

  1. z(x(zy)) = (zxz)y
  2. ((xz)y)z = x(zyz)
  3. (zx)(yz) = z(xy)z.

Left and right multiplication

The Moufang identities can be written in terms of the left and right multiplication operators on Q. The first two identities state that

while the third identity says

for all in . Here is bimultiplication by . The third Moufang identity is therefore equivalent to the statement that the triple is an autotopy of for all in .

Inverse properties

All Moufang loops have the inverse property, which means that each element x has a two-sided inverse x−1 that satisfies the identities:

for all x and y. It follows that and if and only if .

Moufang loops are universal among inverse property loops; that is, a loop Q is a Moufang loop if and only if every loop isotope of Q has the inverse property. It follows that every loop isotope of a Moufang loop is a Moufang loop.

One can use inverses to rewrite the left and right Moufang identities in a more useful form:

Lagrange property

A finite loop Q is said to have the Lagrange property if the order of every subloop of Q divides the order of Q. Lagrange's theorem in group theory states that every finite group has the Lagrange property. It was an open question for many years whether or not finite Moufang loops had Lagrange property. The question was finally resolved by Alexander Grishkov and Andrei Zavarnitsine, and independently by Stephen Gagola III and Jonathan Hall, in 2003: Every finite Moufang loop does have the Lagrange property. More results for the theory of finite groups have been generalized to Moufang loops by Stephen Gagola III in recent years.

Moufang quasigroups

Any quasigroup satisfying one of the Moufang identities must, in fact, have an identity element and therefore be a Moufang loop. We give a proof here for the third identity:

Let a be any element of Q, and let e be the unique element such that ae = a.
Then for any x in Q, (xa)x = (x(ae))x = (xa)(ex).
Cancelling xa on the left gives x = ex so that e is a left identity element.
Now for any y in Q, ye = (ey)(ee) =(e(ye))e = (ye)e.
Cancelling e on the right gives y = ye, so e is also a right identity element.
Therefore, e is a two-sided identity element.

The proofs for the first two identities are somewhat more difficult (Kunen 1996).

Open problems

Phillips' problem is an open problem in the theory presented by J. D. Phillips at Loops '03 in Prague. It asks whether there exists a finite Moufang loop of odd order with a trivial nucleus.

Recall that the nucleus of a loop (or more generally a quasigroup) is the set of such that , and hold for all in the loop.

See also: Problems in loop theory and quasigroup theory

See also

References

  • V. D. Belousov (2001) [1994], "Moufang loop", Encyclopedia of Mathematics, EMS Press
  • Goodaire, Edgar G.; May, Sean; Raman, Maitreyi (1999). The Moufang loops of order less than 64. Nova Science Publishers. ISBN 0-444-82438-3.
  • Gagola III, Stephen (2011). "How and why Moufang loops behave like groups". Quasigroups and Related Systems. 19: 1–22.
  • Grishkov, Alexander; Zavarnitsine, Andrei (2005). "Lagrange's theorem for Moufang loops". Mathematical Proceedings of the Cambridge Philosophical Society. 139: 41–57. doi:10.1017/S0305004105008388.
  • Kunen, K. (1996). "Moufang quasigroups". Journal of Algebra. 183 (1): 231–4. CiteSeerX 10.1.1.52.5356. doi:10.1006/jabr.1996.0216.
  • Moufang, R. (1935), "Zur Struktur von Alternativkörpern", Math. Ann., 110: 416–430, doi:10.1007/bf01448037
  • Romanowska, Anna B.; Smith, Jonathan D. H. (1999). Post-Modern Algebra. Wiley-Interscience. ISBN 0-471-12738-8.

Read other articles:

Asrama Korps Prajoda pada tahun 1949 Korps Prajoda adalah satu hulptroepen atau kesatuan paramiliter di Bali pada masa Hindia Belanda. Kesatuan ini diawasi dan disupervisi langsung oleh sejumlah perwira KNIL (tentara kolonial Hindia Belanda) yang salah satunya dipimpin oleh perwira Belanda bernama Letnan JBT Konig. Pada tanggal 19 Februari 1942, Jepang mendarat di Bali dan tak ada pasukan KNIL yang tersedia. Hanya saja ada Letnan Kolonel WP. Roodenberg dan Korps Prajoda yang anggotanya berjumlah…

См. также: Живой квест Участники в образе людей викторианской эпохи. Ролевая игра живого действия (от англ. Live action role-playing game, LARP) — разновидность ролевой игры, которая характеризуется непосредственным отыгрышем действий персонажа. Весьма схожа с театральным действие…

Christian Träsch Informasi pribadiTanggal lahir 1 September 1987 (umur 36)Tempat lahir Ingolstadt, Jerman BaratTinggi 1,80 m (5 ft 11 in)Posisi bermain BekInformasi klubKlub saat ini VfL WolfsburgNomor 15Karier junior1992–2000 TV 1861 Ingolstadt2000–2003 MTV Ingolstadt2003–2006 1860 MunichKarier senior*Tahun Tim Tampil (Gol)2006–2007 1860 Munich II 39 (2)2007–2008 VfB Stuttgart 39 (1)2008–2011 VfB Stuttgart 83 (5)2011– VfL Wolfsburg 17 (0)Tim nasional‡2009–…

AftermathTheatrical release posterSutradaraElliott LesterProduser Darren Aronofsky Peter Dealbert Randall Emmett Scott Franklin George Furla Eric Watson Ditulis olehJavier GullónPemeran Arnold Schwarzenegger Scoot McNairy Maggie Grace Martin Donovan Penata musikMark ToddSinematograferPieter VermeerPenyuntingNicholas Wayman-HarrisPerusahaanproduksi Emmett/Furla/Oasis Films Pacific View Management Protozoa Pictures thefyzz Grindstone Entertainment Group DistributorLionsgate PremiereTanggal …

Dipsadinae Sibon longifrenis (en) TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataFamiliColubridaeSubfamiliDipsadinae Bonaparte, 1838 Tata namaSinonim taksonXenodontinae Cope, 1895 Xenodontidae Cope, 1895 Dipsadidae Bonaparte, 1838lbs Dipsadidae atau yang juga dideskripsikan sebagai Dipsadinae adalah familia ular yang terdiri dari 800 lebih spesies ular. Sejauh ini, diketahui bahwa semua spesies hanya terdapat di Benua Amerika (kecuali daerah dekat Kutub Utara dan Kutub Selatan), …

Artikel ini bukan mengenai Diskografi Hannah Montana. Diskografi Miley CyrusCyrus performing Bottom of the Ocean on the Wonder World Tour.Album studio4Album rekaman langsung1Album kompilasi1Video musik9Extended play1Singel13Album soundtrack5Remix albums2 Artikel ini adalah bagian dari seri tentang Miley Cyrus Diskografi Videografi Lagu Penghargaan Miley Cyrus adalah seorang artis rekaman Amerika. Diskografi nya terdiri dari tiga album studio, tiga album live, dua album kompilasi, dua album remix…

Liaoning Kapal induk Liaoning di Hong Kong pada tahun 2017. Sejarah → Uni Soviet → Ukraina Nama Riga (1988), kemudian Varyag (1990)Asal nama Riga dari kota Riga, Latvia (1988), kemudian Varyag dari Varangia (1990)Dipesan 1983Pembangun Mykolaiv SelatanBiaya US$ 120 Juta (Rp1,87 Triliun) (Bekas Ukraina)Pasang lunas 6 Desember 1985Diluncurkan 4 Desember 1988Selesai Ditelantarkan (68% selesai)Nasib Dijual ke pembeli Tiongkok, 1998; Ditransfer ke angkatan laut Tiongkok, 2002 Sejarah Tiongkok Nama…

Peta Kota Palu di Sulawesi Tengah Berikut adalah daftar kecamatan dan kelurahan di Kota Palu, Provinsi Sulawesi Tengah, Indonesia. Kota Palu terdiri dari 8 Kecamatan dan 46 Kelurahan dengan luas wilayah 395,06 km² dan jumlah penduduk sebesar 363.867 jiwa dengan sebaran penduduk 921 jiwa/km².[1][2] Sebelumnya, Kota Palu terbagi atas 4 Kecamatan sesuai arah mata angin yaitu Kecamatan Palu Barat, Kecamatan Palu Timur, Kecamatan Palu Utara dan Kecamatan Palu Selatan. Empat kecamata…

Bagan posisi esofagus pada manusia, dilihat dari belakang Esofagus (dari bahasa Yunani: οiσω, oeso - membawa, dan έφαγον, phagus - memakan) atau kerongkongan adalah tabung (tube) berotot pada vertebrata yang dilalui sewaktu makanan mengalir dari bagian mulut ke dalam lambung. Makanan berjalan melalui esofagus dengan menggunakan proses peristaltik. Esofagus bertemu dengan faring – yang menghubungkan esofagus dengan rongga mulut – pada ruas ke-6 tulang belakang. Menurut histologi, eso…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Google Doodle interaktif mengenai Pac-Man sejak tahun 2010 yang akan muncul ketika pengguna mencari google pacman atau play pacman. Perusahaan teknologi Google telah menambahkan easter egg pada berbagai produk dan layanannya, seperti Google Penelusuran, Y…

County building in Truro, Cornwall, England Lys KernowLys Kernow in 2023LocationTruro, CornwallCoordinates50°15′36″N 5°04′09″W / 50.2600°N 5.0692°W / 50.2600; -5.0692Built1966ArchitectFrancis Kenneth Hicklin and Alan GrovesArchitectural style(s)Brutalist style Listed Building – Grade IIDesignated24 April 1998Reference no.1323700 Location of Lys Kernow in Cornwall Lys Kernow, known as New County Hall between 1966 and 2009, is a municipal facility at Trey…

Not to be confused with Football at the Central American Games. Football tournamentFootball at the Central American and Caribbean GamesFounded1930 (men's)2010 (women's)RegionCentral AmericaCaribbeanNumber of teams8 (women's)8 (men's)Current champions Mexico (men's) Mexico (women's)Most successful team(s) Mexico (men's) (7) Mexico (women's) (3) Football at the 2023 Central American and Caribbean Games Association football is one of the sports played at the Central American and…

antv Lampung merupakan stasiun televisi daerah antv yang berada di Bandar Lampung. Siaran antv di Lampung dapat disaksikan di kanal 36 UHF (digital). Sejarah Jika ditilik dari sejarahnya, antv merupakan stasiun televisi swasta pertama yang hadir di Lampung, saat itu sebagai stasiun televisi lokal. Izin siaran stasiun televisi ini didapat 17 September 1991,[1] dan dua tahun kemudian, pada 1 Januari 1993, ANteve memulai siaran percobaannya (di Lampung) selama 5 jam dengan menelan biaya Rp …

TMZ

TMZURLwww.tmz.comTipeTabloidPerdagangan ?YaRegistration (en)OpsionalLangueInggrisBagian dariWarner Media Group, Telepictures (en), Warner Bros. dan Fox Corporation PemilikFox Corporation Pembuat Harvey Levin Jim Paratore[1] Publisher (en)Harvey LevinService entry (en)8 November 2005; 18 tahun lalu (2005-11-08)[2]Lokasi kantor pusatJefferson Boulevard (en) dan Los Angeles NegaraAmerika Serikat Peringkat Alexa 1497 (Maret 2020[update])[3]KeadaanAktif TMZ (…

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2019) George Washington and Calvin Coolidge on the 1926 Sesquicentennial of American Independence commemorative half dollar Several presidents of the United States have appeared on currency. The president of the United States has appeared on official banknotes, coins for circulation, and commemorative coins in the United States, the Confederate States of America, …

Pour les articles homonymes, voir Berchtold. Leopold BerchtoldFonctionsMinistre des Affaires étrangères d'Autriche-Hongrie17 février 1912 - 13 janvier 1915Alois Lexa von AehrenthalStephan Burián von RajeczAmbassadeur d'Autriche-Hongrie en Russie1906-1911Titre de noblesseComteBiographieNaissance 18 avril 1863Vienne (empire d'Autriche)Décès 21 novembre 1942 (à 79 ans)Peresznye (Sopron, Royaume de Hongrie)Nom dans la langue maternelle Leopold Anton Johann Sigismund Josef Korsinus Ferdin…

Pour les articles homonymes, voir Réforme. Ne doit pas être confondu avec Calendrier grégorien. Grégoire VII, miniature du XIIe siècle. La réforme grégorienne est une politique menée durant le Moyen Âge sous l'impulsion de la papauté. Si les historiens admettent que le pape Léon IX (1049-1054) a commencé le redressement de l'Église, c'est néanmoins le pape Grégoire VII (1073-1085) qui a laissé son nom à la réforme. De plus, les efforts pour sortir l'Église …

Vanillylmandelic acid Names Preferred IUPAC name Hydroxy(4-hydroxy-3-methoxyphenyl)acetic acid Other names 2-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetic acidα,4-Dihydroxy-3-methoxybenzeneacetic acidVMAVanillomandelic acidVanillylmandelic acidVanilmandelic acid Identifiers CAS Number 55-10-7 Y 3D model (JSmol) Interactive imageInteractive image Beilstein Reference 2213227 ChEBI CHEBI:20106 Y ChemSpider 1207 Y ECHA InfoCard 100.000.204 EC Number 201-701-6 IUPHAR/BPS 6645 MeSH Vanil…

Sporting event delegationIvory Coast at the2008 Summer OlympicsFlag of Ivory CoastIOC codeCIVNOCComité National Olympique de Côte d'Ivoirein BeijingCompetitors22 in 5 sportsFlag bearer Affoue Amandine AllouMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)1964196819721976198019841988199219962000200420082012201620202024 Ivory Coast sent a delegation to compete at the 2008 Summer Olympics in Beijing, China. Athletics Main article: Athletics at the 2008 Summer Oly…

Suku dan bangsa di semenanjung Italia pada abad ke-9 hingga ke-4 SM. Selanjutnya, invasi Galia dan aktivitas pertahanan Republik Romawi membuat perubahan besar di peta.   Liguria   Venetia   Etruria   Pikenum   Umbria   Latin   Samnit   Messapia   Yunani Perkiraan penyebaran bahasa-bahasa di Zaman Besi Semenanjung Italia dan sekitarnya selama abad keenam SM. Umbria adalah salah satu suku Italik yang pernah …

Kembali kehalaman sebelumnya