Schauder basis

In mathematics, a Schauder basis or countable basis is similar to the usual (Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This makes Schauder bases more suitable for the analysis of infinite-dimensional topological vector spaces including Banach spaces.

Schauder bases were described by Juliusz Schauder in 1927,[1][2] although such bases were discussed earlier. For example, the Haar basis was given in 1909, and Georg Faber discussed in 1910 a basis for continuous functions on an interval, sometimes called a Faber–Schauder system.[3]

Definitions

Let V denote a topological vector space over the field F. A Schauder basis is a sequence {bn} of elements of V such that for every element vV there exists a unique sequence {αn} of scalars in F so that The convergence of the infinite sum is implicitly that of the ambient topology, i.e., but can be reduced to only weak convergence in a normed vector space (such as a Banach space).[4] Unlike a Hamel basis, the elements of the basis must be ordered, since the series may not converge unconditionally.

Note that some authors define Schauder bases to be countable (as above), while others use the term to include uncountable bases. In either case, the sums themselves always are countable. An uncountable Schauder basis is a linearly ordered set rather than a sequence, and each sum inherits the order of its terms from this linear ordering. They can and do arise in practice. As an example, a separable Hilbert space can only have a countable Schauder basis, but a non-separable Hilbert space may have an uncountable one.

Though the definition above technically does not require a normed space, a norm is necessary to say almost anything useful about Schauder bases. The results below assume the existence of a norm.

A Schauder basis {bn}n ≥ 0 is said to be normalized when all the basis vectors have norm 1 in the Banach space V.

A sequence {xn}n ≥ 0 in V is a basic sequence if it is a Schauder basis of its closed linear span.

Two Schauder bases, {bn} in V and {cn} in W, are said to be equivalent if there exist two constants c > 0 and C such that for every natural number N ≥ 0 and all sequences {αn} of scalars,

A family of vectors in V is total if its linear span (the set of finite linear combinations) is dense in V. If V is a Hilbert space, an orthogonal basis is a total subset B of V such that elements in B are nonzero and pairwise orthogonal. Further, when each element in B has norm 1, then B is an orthonormal basis of V.

Properties

Let {bn} be a Schauder basis of a Banach space V over F = R or C. It is a subtle consequence of the open mapping theorem that the linear mappings {Pn} defined by

are uniformly bounded by some constant C.[5] When C = 1, the basis is called a monotone basis. The maps {Pn} are the basis projections.

Let {b*n} denote the coordinate functionals, where b*n assigns to every vector v in V the coordinate αn of v in the above expansion. Each b*n is a bounded linear functional on V. Indeed, for every vector v in V,

These functionals {b*n} are called biorthogonal functionals associated to the basis {bn}. When the basis {bn} is normalized, the coordinate functionals {b*n} have norm ≤ 2C in the continuous dual V ′ of V.

A Banach space with a Schauder basis is necessarily separable, but the converse is false. Since every vector v in a Banach space V with a Schauder basis is the limit of Pn(v), with Pn of finite rank and uniformly bounded, such a space V satisfies the bounded approximation property.

A theorem attributed to Mazur[6] asserts that every infinite-dimensional Banach space V contains a basic sequence, i.e., there is an infinite-dimensional subspace of V that has a Schauder basis. The basis problem is the question asked by Banach, whether every separable Banach space has a Schauder basis. This was negatively answered by Per Enflo who constructed a separable Banach space failing the approximation property, thus a space without a Schauder basis.[7]

Examples

The standard unit vector bases of c0, and of p for 1 ≤ p < ∞, are monotone Schauder bases. In this unit vector basis {bn}, the vector bn in V = c0 or in V = ℓp is the scalar sequence [bn, j]j where all coordinates bn, j are 0, except the nth coordinate:

where δn, j is the Kronecker delta. The space ℓ is not separable, and therefore has no Schauder basis.

Every orthonormal basis in a separable Hilbert space is a Schauder basis. Every countable orthonormal basis is equivalent to the standard unit vector basis in ℓ2.

The Haar system is an example of a basis for Lp([0, 1]), when 1 ≤ p < ∞.[2] When 1 < p < ∞, another example is the trigonometric system defined below. The Banach space C([0, 1]) of continuous functions on the interval [0, 1], with the supremum norm, admits a Schauder basis. The Faber–Schauder system is the most commonly used Schauder basis for C([0, 1]).[3][8]

Several bases for classical spaces were discovered before Banach's book appeared (Banach (1932)), but some other cases remained open for a long time. For example, the question of whether the disk algebra A(D) has a Schauder basis remained open for more than forty years, until Bočkarev showed in 1974 that a basis constructed from the Franklin system exists in A(D).[9] One can also prove that the periodic Franklin system[10] is a basis for a Banach space Ar isomorphic to A(D).[11] This space Ar consists of all complex continuous functions on the unit circle T whose conjugate function is also continuous. The Franklin system is another Schauder basis for C([0, 1]),[12] and it is a Schauder basis in Lp([0, 1]) when 1 ≤ p < ∞.[13] Systems derived from the Franklin system give bases in the space C1([0, 1]2) of differentiable functions on the unit square.[14] The existence of a Schauder basis in C1([0, 1]2) was a question from Banach's book.[15]

Relation to Fourier series

Let {xn} be, in the real case, the sequence of functions

or, in the complex case,

The sequence {xn} is called the trigonometric system. It is a Schauder basis for the space Lp([0, 2π]) for any p such that 1 < p < ∞. For p = 2, this is the content of the Riesz–Fischer theorem, and for p ≠ 2, it is a consequence of the boundedness on the space Lp([0, 2π]) of the Hilbert transform on the circle. It follows from this boundedness that the projections PN defined by

are uniformly bounded on Lp([0, 2π]) when 1 < p < ∞. This family of maps {PN} is equicontinuous and tends to the identity on the dense subset consisting of trigonometric polynomials. It follows that PNf tends to f in Lp-norm for every fLp([0, 2π]). In other words, {xn} is a Schauder basis of Lp([0, 2π]).[16]

However, the set {xn} is not a Schauder basis for L1([0, 2π]). This means that there are functions in L1 whose Fourier series does not converge in the L1 norm, or equivalently, that the projections PN are not uniformly bounded in L1-norm. Also, the set {xn} is not a Schauder basis for C([0, 2π]).

Bases for spaces of operators

The space K(ℓ2) of compact operators on the Hilbert space ℓ2 has a Schauder basis. For every x, y in ℓ2, let xy denote the rank one operator v ∈ ℓ2 → <v, x > y. If {en}n ≥ 1 is the standard orthonormal basis of ℓ2, a basis for K(ℓ2) is given by the sequence[17]

For every n, the sequence consisting of the n2 first vectors in this basis is a suitable ordering of the family {ejek}, for 1 ≤ j, kn.

The preceding result can be generalized: a Banach space X with a basis has the approximation property, so the space K(X) of compact operators on X is isometrically isomorphic[18] to the injective tensor product

If X is a Banach space with a Schauder basis {en}n ≥ 1 such that the biorthogonal functionals are a basis of the dual, that is to say, a Banach space with a shrinking basis, then the space K(X) admits a basis formed by the rank one operators e*jek : ve*j(v) ek, with the same ordering as before.[17] This applies in particular to every reflexive Banach space X with a Schauder basis

On the other hand, the space B(ℓ2) has no basis, since it is non-separable. Moreover, B(ℓ2) does not have the approximation property.[19]

Unconditionality

A Schauder basis {bn} is unconditional if whenever the series converges, it converges unconditionally. For a Schauder basis {bn}, this is equivalent to the existence of a constant C such that

for all natural numbers n, all scalar coefficients {αk} and all signs εk = ±1. Unconditionality is an important property since it allows one to forget about the order of summation. A Schauder basis is symmetric if it is unconditional and uniformly equivalent to all its permutations: there exists a constant C such that for every natural number n, every permutation π of the set {0, 1, ..., n}, all scalar coefficients {αk} and all signs {εk},

The standard bases of the sequence spaces c0 and ℓp for 1 ≤ p < ∞, as well as every orthonormal basis in a Hilbert space, are unconditional. These bases are also symmetric.

The trigonometric system is not an unconditional basis in Lp, except for p = 2.

The Haar system is an unconditional basis in Lp for any 1 < p < ∞. The space L1([0, 1]) has no unconditional basis.[20]

A natural question is whether every infinite-dimensional Banach space has an infinite-dimensional subspace with an unconditional basis. This was solved negatively by Timothy Gowers and Bernard Maurey in 1992.[21]

Schauder bases and duality

A basis {en}n≥0 of a Banach space X is boundedly complete if for every sequence {an}n≥0 of scalars such that the partial sums

are bounded in X, the sequence {Vn} converges in X. The unit vector basis for ℓp, 1 ≤ p < ∞, is boundedly complete. However, the unit vector basis is not boundedly complete in c0. Indeed, if an = 1 for every n, then

for every n, but the sequence {Vn} is not convergent in c0, since ||Vn+1Vn|| = 1 for every n.

A space X with a boundedly complete basis {en}n≥0 is isomorphic to a dual space, namely, the space X is isomorphic to the dual of the closed linear span in the dual X ′ of the biorthogonal functionals associated to the basis {en}.[22]

A basis {en}n≥0 of X is shrinking if for every bounded linear functional f on X, the sequence of non-negative numbers

tends to 0 when n → ∞, where Fn is the linear span of the basis vectors em for mn. The unit vector basis for ℓp, 1 < p < ∞, or for c0, is shrinking. It is not shrinking in ℓ1: if f is the bounded linear functional on ℓ1 given by

then φnf(en) = 1 for every n.

A basis [en]n ≥ 0 of X is shrinking if and only if the biorthogonal functionals [e*n]n ≥ 0 form a basis of the dual X ′.[23]

Robert C. James characterized reflexivity in Banach spaces with basis: the space X with a Schauder basis is reflexive if and only if the basis is both shrinking and boundedly complete.[24] James also proved that a space with an unconditional basis is non-reflexive if and only if it contains a subspace isomorphic to c0 or ℓ1.[25]

A Hamel basis is a subset B of a vector space V such that every element v ∈ V can uniquely be written as

with αbF, with the extra condition that the set

is finite. This property makes the Hamel basis unwieldy for infinite-dimensional Banach spaces; as a Hamel basis for an infinite-dimensional Banach space has to be uncountable. (Every finite-dimensional subspace of an infinite-dimensional Banach space X has empty interior, and is nowhere dense in X. It then follows from the Baire category theorem that a countable union of bases of these finite-dimensional subspaces cannot serve as a basis.[26])

See also

Notes

  1. ^ see Schauder (1927).
  2. ^ a b Schauder, Juliusz (1928). "Eine Eigenschaft des Haarschen Orthogonalsystems". Mathematische Zeitschrift. 28: 317–320. doi:10.1007/bf01181164.
  3. ^ a b Faber, Georg (1910), "Über die Orthogonalfunktionen des Herrn Haar", Deutsche Math.-Ver (in German) 19: 104–112. ISSN 0012-0456; http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN37721857X ; http://resolver.sub.uni-goettingen.de/purl?GDZPPN002122553
  4. ^ Karlin, S. (December 1948). "Bases in Banach spaces". Duke Mathematical Journal. 15 (4): 971–985. doi:10.1215/S0012-7094-48-01587-7. ISSN 0012-7094.
  5. ^ see Theorem 4.10 in Fabian et al. (2011).
  6. ^ for an early published proof, see p. 157, C.3 in Bessaga, C. and Pełczyński, A. (1958), "On bases and unconditional convergence of series in Banach spaces", Studia Math. 17: 151–164. In the first lines of this article, Bessaga and Pełczyński write that Mazur's result appears without proof in Banach's book —to be precise, on p. 238— but they do not provide a reference containing a proof.
  7. ^ Enflo, Per (July 1973). "A counterexample to the approximation problem in Banach spaces". Acta Mathematica. 130 (1): 309–317. doi:10.1007/BF02392270.
  8. ^ see pp. 48–49 in Schauder (1927). Schauder defines there a general model for this system, of which the Faber–Schauder system used today is a special case.
  9. ^ see Bočkarev, S. V. (1974), "Existence of a basis in the space of functions analytic in the disc, and some properties of Franklin's system", (in Russian) Mat. Sb. (N.S.) 95(137): 3–18, 159. Translated in Math. USSR-Sb. 24 (1974), 1–16. The question is in Banach's book, Banach (1932) p. 238, §3.
  10. ^ See p. 161, III.D.20 in Wojtaszczyk (1991).
  11. ^ See p. 192, III.E.17 in Wojtaszczyk (1991).
  12. ^ Franklin, Philip (1928). "A set of continuous orthogonal functions". Math. Ann. 100: 522–529. doi:10.1007/bf01448860.
  13. ^ see p. 164, III.D.26 in Wojtaszczyk (1991).
  14. ^ see Ciesielski, Z (1969). "A construction of basis in C1(I2)". Studia Math. 33: 243–247. and Schonefeld, Steven (1969). "Schauder bases in spaces of differentiable functions". Bull. Amer. Math. Soc. 75 (3): 586–590. doi:10.1090/s0002-9904-1969-12249-4.
  15. ^ see p. 238, §3 in Banach (1932).
  16. ^ see p. 40, II.B.11 in Wojtaszczyk (1991).
  17. ^ a b see Proposition 4.25, p. 88 in Ryan (2002).
  18. ^ see Corollary 4.13, p. 80 in Ryan (2002).
  19. ^ see Szankowski, Andrzej (1981). "B(H) does not have the approximation property". Acta Math. 147: 89–108. doi:10.1007/bf02392870.
  20. ^ see p. 24 in Lindenstrauss & Tzafriri (1977).
  21. ^ Gowers, W. Timothy; Maurey, Bernard (6 May 1992). "The unconditional basic sequence problem". arXiv:math/9205204.
  22. ^ see p. 9 in Lindenstrauss & Tzafriri (1977).
  23. ^ see p. 8 in Lindenstrauss & Tzafriri (1977).
  24. ^ See James (1950) and Lindenstrauss & Tzafriri (1977, p. 9).
  25. ^ See James (1950) and Lindenstrauss & Tzafriri (1977, p. 23).
  26. ^ Carothers, N. L. (2005), A short course on Banach space theory, Cambridge University Press ISBN 0-521-60372-2

This article incorporates material from Countable basis on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

References

.

Further reading

  • Kufner, Alois (2013), Function spaces, De Gruyter Series in Nonlinear analysis and applications, vol. 14, Prague: Academia Publishing House of the Czechoslovak Academy of Sciences, de Gruyter


Read other articles:

Dolichoprosopus Dolichoprosopus lethalis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Dolichoprosopus Dolichoprosopus adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yan…

Rancangan untuk Monumen Hindia karya Rudi Augustinus di halaman Museum Perjuangan Gouda. Rinus Cornelis Rudi Augustinus (lahir 19 Januari 1939) adalah pematung, pelukis, pandai emas, dan perancang koin Belanda.[1] Augustinus membuat karya seperti Monument Strafkamp Dampit (Monumen Kamp Tawanan Dampit), yang didirikan di Bronbeek pada tanggal 19 Oktober 2001. Monumen ini merupakan peringatan atas korban yang berjatuhan di kamp konsentrasi Jepang yang ada di Dampit, Jawa Timur.[2] …

Dataran Besar (Great Plains) Dataran Besar di Nebraska Countries Amerika Serikat, Kanada Panjang 3.200 km (1.988 mi) Lebar 800 km (497 mi) Area 2.800.000 km2 (1.081.086 sq mi) Dataran Besar[1][2] (Inggris: Great Plainscode: en is deprecated ) adalah suatu dataran di Amerika Utara yang terbentang dari Pegunungan Rocky, Kanada sampai Amerika Serikat barat daya.[3] Dataran ini berbatasan dengan Sungai Pecos (anak sungai Rio Grande)…

Dutch footballer and manager Olympic medal record Men's Football 1912 Stockholm Team Competition Jan Vos (third from right), Olympics 1912 See also Jan Vos (poet). Jan Vos (April 17, 1888 in Utrecht – August 25, 1939 in Dordrecht) was a Dutch amateur football (soccer) player who competed in the 1912 Summer Olympics. He was part of the Dutch team, which won the bronze medal in the football tournament. With 8 goals scored Vos was the 3rd best goalscorer in the tournament.[1] References ^…

City and state capital in Sarawak, Malaysia This article is about the city in Sarawak, Malaysia. For the administrative division, see Kuching Division. For the administrative district, see Kuching District. For the federal constituency represented in the Dewan Rakyat, see Bandar Kuching (federal constituency). For other subset of the Kuching district, see Padawan municipality. State capital city and district capital in Sarawak, MalaysiaKuchingState capital city and district capitalCity of Kuchin…

For related races, see 1982 United States Senate elections. 1982 United States Senate election in Arizona ← 1976 November 2, 1982 1988 →   Nominee Dennis DeConcini Pete Dunn Party Democratic Republican Popular vote 411,970 291,749 Percentage 56.91% 40.30% County resultsDeConcini:      50–60%      60–70%      70–80%      80–90% Dunn:     &…

American politician This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2017) (Learn how and when to remove this template message) Lewis B. GunckelMember of the U.S. House of Representativesfrom Ohio's 4th districtIn officeMarch 4, 1873 – March 3, 1875Preceded byJohn F. McKinneySucceeded byJohn A. Mc…

1965 National Football League season 1965 NFL seasonRegular seasonDurationSeptember 19 –December 26, 1965East ChampionsCleveland BrownsWest ChampionsGreen Bay Packers (playoff)Championship Game ChampionsGreen Bay Packers ← 1964 NFL seasons 1966 → EaglesBrownsGiantsCardinalsSteelers ........ RedskinsCowboysPackersLions49ersColtsBearsRamsVikingsclass=notpageimage| NFL teams: West, East The 1965 NFL season was the 46th regular season of the National Football League. The Green Bay Pack…

Aslan MaskhadovAslan Maskhadov en 1999.FonctionPrésident de l'Itchkérie12 février 1997 - 8 mars 2005Zelimkhan IandarbievAbdoul-Khalim SaïdoullaïevBiographieNaissance 21 septembre 1951Chokaï (d)Décès 8 mars 2005 (à 53 ans)Tolstoy-Yurt (en)Sépulture InconnuNom dans la langue maternelle Аслан Али кӏант МасхаданNationalités république tchétchène d'ItchkériesoviétiqueAllégeances Union soviétique, république tchétchène d'ItchkérieFormation Académie d'ar…

American baseball player (born 1940) Baseball player Garry RoggenburkPitcherBorn: (1940-04-16) April 16, 1940 (age 84)Cleveland, Ohio, U.S.Batted: RightThrew: LeftMLB debutApril 20, 1963, for the Minnesota TwinsLast MLB appearanceJuly 27, 1969, for the Seattle PilotsMLB statisticsWin–loss record6–9Earned run average3.64Strikeouts56 Teams Minnesota Twins (1963, 1965–1966) Boston Red Sox (1967–1969) Seattle Pilots (1969) Garry Earl Roggenburk (born April …

Isaac TitsinghTitsingh en Chine. Titsingh est l'homme assis qui porte un chapeau.FonctionsAmbassadeurDirector of Dutch Bengal (d)BiographieNaissance 10 janvier 1745Amsterdam (Provinces-Unies)Décès 2 février 1812 (à 67 ans)Ancien 1er arrondissement de ParisSépulture Cimetière du Père-LachaiseNationalité néerlandaiseFormation Université de LeydeActivités Diplomate, collection de monnaies, historien, écrivain, chirurgienAutres informationsMembre de Royal SocietyPersonne liée Kutsu…

Gently tapered cylinder against which material can be forged or shaped For other uses, see Mandrel (disambiguation). Not to be confused with Mandrill or Mandrell. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mandrel – news · newspapers · books · scholar · JSTOR (October 2008) (Learn how and when to remove th…

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (décembre 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Co…

Monteleone d'Orvieto kota kecilkomune di Italia Tempat Negara berdaulatItaliaRegion di ItaliaUmbraProvinsi di ItaliaProvinsi Terni NegaraItalia Ibu kotaMonteleone d'Orvieto PendudukTotal1.369  (2023 )GeografiLuas wilayah24,1 km² [convert: unit tak dikenal]Ketinggian500 m Berbatasan denganCittà della Pieve Fabro Montegabbione Piegaro SejarahSanto pelindungTheodorus dari Amasea Organisasi politikAnggota dariThe most beautiful villages in Italy Informasi tambahanKode pos05017 Zona w…

У этого топонима есть и другие значения, см. Ридо. Ридоангл. The Rideau Canal Шлюзы в Оттаве летом 2004 года Расположение Страна Канада ПровинцияОнтарио Характеристика Длина канала202 км Водоток ГоловаРидо 45°25′36″ с. ш. 75°41′56″ з. д.HGЯOУстьеОнтарио  44°13′33″ с.…

У этого термина существуют и другие значения, см. Западный округ. Западный внутригородской округ город Краснодар Дата основания 1936 год Дата упразднения 1994 Прежние имена Кагановичский, Ленинский районы Микрорайоны Дубинка, Черёмушки, Покровка Площадь 22[1]  км² Насел…

Голубянки Самец голубянки икар Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:ТрахейнодышащиеНадкласс:ШестиногиеКласс:Н…

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Матер…

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Матер…

La définition de la paysannerie est, au XVIIIe siècle, encore assez floue. Le paysan, c’est celui qui vit à la campagne, en milieu rural. Sa condition est aussi caractérisée par une activité : le travail de la terre. Dans la société trifonctionnelle, le paysan fait partie de l’ordre des laboratores. À la fin de l’Ancien Régime, le monde clos de la paysannerie représente plus de 80 % de la population française[1]. Le XVIIIe siècle n’a pas connu de révolution…

Kembali kehalaman sebelumnya