Stress concentration

Internal force lines are denser near the hole

In solid mechanics, a stress concentration (also called a stress raiser or a stress riser or notch sensitivity) is a location in an object where the stress is significantly greater than the surrounding region. Stress concentrations occur when there are irregularities in the geometry or material of a structural component that cause an interruption to the flow of stress. This arises from such details as holes, grooves, notches and fillets. Stress concentrations may also occur from accidental damage such as nicks and scratches.

The degree of concentration of a discontinuity under typically tensile loads can be expressed as a non-dimensional stress concentration factor , which is the ratio of the highest stress to the nominal far field stress. For a circular hole in an infinite plate, .[1] The stress concentration factor should not be confused with the stress intensity factor, which is used to define the effect of a crack on the stresses in the region around a crack tip.[2]

For ductile materials, large loads can cause localised plastic deformation or yielding that will typically occur first at a stress concentration allowing a redistribution of stress and enabling the component to continue to carry load. Brittle materials will typically fail at the stress concentration. However, repeated low level loading may cause a fatigue crack to initiate and slowly grow at a stress concentration leading to the failure of even ductile materials. Fatigue cracks always start at stress raisers, so removing such defects increases the fatigue strength.

Description

Stress concentrations occur when there are irregularities in the geometry or material of a structural component that cause an interruption to the flow of stress.

Geometric discontinuities cause an object to experience a localised increase in stress. Examples of shapes that cause stress concentrations are sharp internal corners, holes, and sudden changes in the cross-sectional area of the object as well as unintentional damage such as nicks, scratches and cracks. High local stresses can cause objects to fail more quickly, so engineers typically design the geometry to minimize stress concentrations.

Material discontinuities, such as inclusions in metals, may also concentrate the stress. Inclusions on the surface of a component may be broken from machining during manufacture leading to microcracks that grow in service from cyclic loading. Internally, the failure of the interfaces around inclusions during loading may lead to static failure by microvoid coalescence.

Stress concentration factor

The stress concentration factor, , is the ratio of the highest stress to a nominal stress of the gross cross-section and defined as[3]

Note that the dimensionless stress concentration factor is a function of the geometry shape and independent of its size.[4] These factors can be found in typical engineering reference materials.

Stress concentration around an elliptical hole in a plate in tension

E. Kirsch derived the equations for the elastic stress distribution around a hole. The maximum stress felt near a hole or notch occurs in the area of lowest radius of curvature. In an elliptical hole of length and width , under a far-field stress , the stress at the ends of the major axes is given by Inglis' equation:[5]

where is the radius of curvature of the elliptical hole. For circular holes in an infinite plate where , the stress concentration factor is .

As the radius of curvature approaches zero, such as at the tip of a sharp crack, the maximum stress approaches infinity and a stress concentration factor cannot therefore be used for a crack. Instead, the stress intensity factor which defines the scaling of the stress field around a crack tip, is used.[2]

Causes of Stress Concentration

Stress concentration can arise due to various factors. The following are the main causes of stress concentration:

Material Defects: When designing mechanical components, it is generally presumed that the material used is consistent and homogeneous throughout. In practice, however, material inconsistencies such as internal cracks, blowholes, cavities in welds, air holes in metal parts, and non-metallic or foreign inclusions can occur. These defects act as discontinuities within the component, disrupting the uniform distribution of stress and thereby leading to stress concentration.

Contact Stress: Mechanical components are frequently subjected to forces that are concentrated at specific points or small areas. This localized application of force can result in disproportionately high pressures at these points, causing stress concentration. Typical instances include the interactions at the points of contact in meshing gear teeth,[6] the interfaces between cams and followers, and the contact zones in ball bearings.

Thermal Stress: Thermal stress occurs when different parts of a structure expand or contract at different rates due to variations in temperature. This differential in thermal expansion and contraction generates internal stresses, which can lead to areas of stress concentration within the structure.

Geometric Discontinuities: Features such as steps on a shaft, shoulders, and other abrupt changes in the cross-sectional area of components are often necessary for mounting elements like gears and bearings or for assembly considerations. While these features are essential for the functionality of the device, they introduce sharp transitions in geometry that become hotspots for stress concentration. Additionally, design elements like oil holes, grooves, keyways, splines, and screw threads also introduce discontinuities that further exacerbate stress concentration.

Rough Surface: Imperfections on the surface of components, such as machining scratches, stamp marks, or inspection marks, can interrupt the smooth flow of stress across the surface, leading to localized increases in stress. These imperfections, although often small, can significantly impact the durability and performance of mechanical components by initiating stress concentration.[7]

Methods for determining factors

There are experimental methods for measuring stress concentration factors including photoelastic stress analysis, thermoelastic stress analysis,[8] brittle coatings or strain gauges.

During the design phase, there are multiple approaches to estimating stress concentration factors. Several catalogs of stress concentration factors have been published.[9] Perhaps most famous is Stress Concentration Design Factors by Peterson, first published in 1953.[10][11] Finite element methods are commonly used in design today. Other methods include the boundary element method[12] and meshfree methods.

Limiting the effects of stress concentrations

Stress concentrations can be mitigated through techniques that smoothen the flow of stress around a discontinuity:

Material Removal: Introducing auxiliary holes in the high stress region to create a more gradual transition. The size and position of these holes must be optimized.[13][14] Known as crack tip blunting, a counter-intuitive example of reducing one of the worst types of stress concentrations, a crack, is to drill a large hole at the end of the crack. The drilled hole, with its relatively large size, serves to increase the effective crack tip radius and thus reduce the stress concentration.[4]

Hole Reinforcement: Adding higher strength material around the hole, usually in the form of bonded rings or doublers.[15] Composite reinforcements can reduce the SCF.

Shape Optimization: Adjusting the hole shape, often transitioning from circular to elliptical, to minimize stress gradients. This must be checked for feasibility. One example is adding a fillet to internal corners.[16] Another example is in a threaded component, where the force flow line is bent as it passes from shank portion to threaded portion; as a result, stress concentration takes place. To reduce this, a small undercut is made between the shank and threaded portions

Functionally Graded Materials: Using materials with properties that vary gradually can reduce the SCF compared to a sudden change in material.

The optimal mitigation technique depends on the specific geometry, loading scenario, and manufacturing constraints. In general, a combination of methods is required for the best result. While there is no universal solution, careful analysis of the stress flow and parameterization of the model can point designers toward an effective stress reduction strategy.

Examples

The sharp corner at the brick has acted as a stress concentrator within the concrete causing it to crack
  • The de Havilland Comet aircraft experienced a number of catastrophic failures that were eventually found to be due to fatigue cracks growing from the high stress concentration caused by the use of punched rivet holes around the windows. The square passenger windows were also found to have higher stress concentrations than expected and were redesigned.
  • Brittle fractures at the corners of hatches in Liberty ships in cold and stressful conditions in winter storms in the Atlantic Ocean.
  • A focus point of stress on the margins of an implant, where metal meets bone, of an implanted orthosis is very likely to be the point of failure.

References

  1. ^ Todd, Greg. "Stress Concentrations at Holes". Fracture Mechanics.
  2. ^ a b Schijve, Jaap (2001). Fatigue of Structures and Materials. Springer. p. 90. ISBN 978-0792370147.
  3. ^ Shigley, Joseph Edward (1977). Mechanical Engineering Design (Third ed.). McGraw-Hill.
  4. ^ a b stress at round-tip notches an improved solution
  5. ^ "Stresses At Elliptical Holes". Retrieved 2020-03-13.
  6. ^ Tuplin WA. Gear-Tooth Stresses at High Speed. Proceedings of the Institution of Mechanical Engineers. 1950;163(1):162-175. doi:10.1243/PIME_PROC_1950_163_020_02
  7. ^ Persson, B.N.J. Surface Roughness-Induced Stress Concentration. Tribol Lett 71, 66 (2023). https://doi.org/10.1007/s11249-023-01741-4
  8. ^ Rajic, Nik; Street, Neil (2014). "A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis". Quantitative InfraRed Thermography Journal. 11 (2). Taylor & Francis: 207–221. doi:10.1080/17686733.2014.962835. S2CID 137607813.
  9. ^ ESDU64001: Guide to stress concentration data. ESDU. ISBN 1-86246-279-8.
  10. ^ Peterson, Rudolf Earl (1953). Stress Concentration Design Factors. John Wiley & Sons. ISBN 978-0471683766.
  11. ^ Pilkey, Walter D. (1999). Peterson's Stress Concentration Factors (2nd ed.). Wiley. ISBN 0-471-53849-3.
  12. ^ R. T. Fenner, “The boundary integral equation and boundary element method in engineering stress analysis”, The Journal of Strain Analysis for Engineering Design IMechE, vol. 18, no. 4, pp. 199-205, 1983.
  13. ^ K. Rajaiah and A. J. Durelli, “Optimum hole shapes in finite plates under uni-axial load,” Applied Mechanics, vol. 46(3), pp. 691-695, 1979.
  14. ^ S. A. Meguid, “Finite element analysis of defence hole systems for the reduction of stress Concentration in a uniaxially–loaded plate with coaxial holes,” Engineering Fracture Mechanics, vol. 25, no. 4, pp. 403-413, 1986.
  15. ^ G. S. Giare and R. Shabahang, “The reduction of stress concentration around the hole in an isotropic plate using composite material,” Engineering Fracture Mechanics, vol. 32, no. 5, pp. 757-766, 1989.
  16. ^ Z. Wu, “Optimal hole shape for minimum stress concentration using parameterized geometry models,” Structural and Multidisciplinary Optimization, vol. 37, no. 6, pp. 625-634, Feb, 2009.

External links

Read other articles:

Revolusi Arasثورة الأرزPengunjuk rasa bergerak ke Alun-Alun Syuhada di BeirutTanggal14 Februari – 27 April 2005LokasiLebanon (khususnya ibu kota Beirut)SebabPembunuhan mantan Perdana Menteri Lebanon Rafik Hariri Dan para tokoh Lebanon yang Anti-SuriahTujuan Menarik tentara Suriah dari Lebanon Menyatukan seluruh rakyat Lebanon dalam memperjuangkan kebebasan dan kemerdekaan Menggulingkan pemerintahan Karami yang pro-Suriah Memecat enam komandan dinas keamanan Lebanon dan Jaksa Agung Mem…

Chemical compound Not to be confused with Fluprednidene acetate. FluprednideneClinical dataOther namesFluprednylidene; 9α-Fluoro-11β,17α,21-trihydroxy-16-methylenepregna-1,4-diene-3,20-dioneDrug classCorticosteroid; GlucocorticoidIdentifiers IUPAC name (8S,9R,10S,11S,13S,14S,17R)-9-Fluoro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-16-methylidene-7,8,11,12,14,15-hexahydro-6H-cyclopenta[a]phenanthren-3-one CAS Number2193-87-5PubChem CID11794741ChemSpider9969413UNIIFA517NS3N7CompTox Das…

Biara StičnaBiara StičnaAgamaBadan pengelolaOrdo SistersienLokasiLokasiStična, Ivančna Gorica, SloveniaKoordinat45°57′25.19″N 14°48′20.70″E / 45.9569972°N 14.8057500°E / 45.9569972; 14.8057500ArsitekturArsitekFrancesco Ferrata (1694), Candido Zulliani (pertengahan abad ke-18)Dibangun olehPellegrinus I., Patriark AquileiaNama resmi: Stična - Biara Stična Biara Stična (bahasa Slovenia: Cistercijanska opatija Stična, juga Samostan Stična; Jerman: Klo…

Keuskupan Agung MaduraiArchidioecesis Madhuraiensisமதுரை உயர்மறைKatedral Santa Maria di MaduraiLokasiNegaraIndiaProvinsi gerejawiMaduraiStatistikLuas8.910 km2 (3.440 sq mi)Populasi- Total- Katolik(per 2014)2.068.000145,000 (7%)Paroki67InformasiRitusRitus LatinKatedralKatedral Maria Bunda Dolores (Katedral Santa Maria) di MaduraiPelindungSanyo Yohanes de BritoKepemimpinan kiniPausFransiskusUskup agungAntonius PappusamyVikaris jenderalJeya…

Gandum Triticum aestivum, jenis gandum yang paling umum ditanam. Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Liliopsida Ordo: Poales Famili: Poaceae Genus: TriticumL. Spesies T. aestivum T. aethiopicum T. araraticum T. boeoticum T. carthlicum T.compactum T. dicoccoides T. dicoccon T. durum T. ispahanicum T. karamyschevii T. macha T. militinae T. monococcum T. polonicum T. spelta T. sphaerococcum T. timopheevii T. turanicum T. turgidum T. urartu T. vavilovii T. zhukovskyi Re…

Kementerian Kebudayaan Mesir Situs webhttp://www.moc.gov.eg/ Kementerian Kebudayaan Mesir ([وزارة الثقافة مصر Wuzarah ats-Tsaqafah Mashr] Error: {{Lang-xx}}: text has italic markup (help)) adalah kementerian dalam Pemerintah Mesir yang membidangi urusan pemeliharaan dan promosi kebudayaan Mesir. Saat ini, kementerian ini dipimpin oleh Menteri Kebudayaan Gaber Asfour.[1] Struktur kementerian Majelis Tinggi Kebudayaan Otoritas Buku Umum Mesir Perpustakaan dan Arsip Nasional …

Air Canada JetzDidirikan31 Oktober 2001; 22 tahun lalu (2001-10-31)AOC #5262 (berbagi dengan Air Canada)[1]AliansiStar Alliance (afiliasi)Armada5[2]Perusahaan indukAir CanadaKantor pusatMontreal, Quebec Air Canada Jetz merupakan sebuah maskapai penerbangan yang berbasis di Montreal, Quebec, Kanada. Maskapai ini mengoeprasikan penerbangan bisnis untuk klien korporat dan tim olahraga profesional.[3] Sejarah Maskapai penerbangan ini diresmikan dan memulai operasinya pad…

العلاقات النمساوية الكوستاريكية النمسا كوستاريكا   النمسا   كوستاريكا تعديل مصدري - تعديل   العلاقات النمساوية الكوستاريكية هي العلاقات الثنائية التي تجمع بين النمسا وكوستاريكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (October 2015) (Learn how and when to remove this template message) This article relies largely or entirely on a single source. …

Israeli Supreme Court justice Ayala ProcacciaAyala ProcacciaJustice of the Supreme Court of IsraelIn office2001–2011 Personal detailsBorn1941 (age 82–83)Ashdot Ya'akov, IsraelEducationHebrew University of Jerusalem (LLB, MA)University of Pennsylvania (SJD) Ayala Procaccia (Hebrew: אילה פרוקצ'יה, born 1941) is a retired Israeli Justice of the Supreme Court of Israel. Before being elected to the Supreme Court in 2001, she served as a judge in the Jerusalem Magistrates’ Co…

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this template message) Mississippi Army National GuardActive1798–presentCountry United StatesAllegiance MississippiBranchArmy National GuardTypeARNG Headquarters CommandSizec.10,000 (Globalsecurity.org)Part ofMississippi National GuardGarrison/HQJackson,…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: BAC Films – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this template message) BAC FilmsIndustryFilm productionFilm distributionFounded1986FounderJean LabadieHeadquartersParis, Washington D.C., France, United StatesArea s…

Brad Friedel Informasi pribadiNama lengkap Bradley Howard FriedelTanggal lahir 18 Mei 1971 (umur 52)Tempat lahir Lakewood, Ohio, United StatesTinggi 6 ft 3 in (1,91 m)Posisi bermain Penjaga gawangKarier junior1990–1992 UCLAKarier senior*Tahun Tim Tampil (Gol)1994–1995 USSF 0 (0)1994 → Newcastle United (loan) 0 (0)1995 → Brøndby (pinjaman) 0 (0)1995–1996 Galatasaray 30 (0)1996–1997 Columbus Crew 38 (0)1997–2000 Liverpool 25 (0)2000–2008 Blackburn Rovers 287 (1…

Direktorat Politik Gabungan BegaraОбъединённое государственное политическое управление при СНК СССРObyedinyonnoye gosudarstvennoye politicheskoye upravleniye pri SNK USSRInformasi lembagaDibentuk15 November 1923Nomenklatur lembaga sebelumnya Direktorat Politik NegaraDibubarkan10 Juli 1934Lembaga pengganti NKVDJenisPolisi rahasiaKantor pusat11-13 ulitsa Bol. Lubyanka,Moskwa, RSFSR, USSRPejabat eksekutifFelix Dzerzhinsky (1923–1926)Vyach…

King of Kings of the Achaemenid Empire from 423 to 405/4 BC This article is about the ancient king of the Achaemenid Empire. For other uses, see Darius II (disambiguation). Darius II𐎭𐎠𐎼𐎹𐎺𐎢𐏁 King of Kings Great King King of Persia Pharaoh of Egypt King of Countries Darius II as depicted on his tomb in Naqsh-e RostamKing of Kings of the Achaemenid EmpireReign423–404 BCPredecessorSogdianusSuccessorArtaxerxes IIPharaoh of EgyptReign423–404 BCPredecessorSogdianusSuccessorAmyr…

У этого термина существуют и другие значения, см. Парниковый эффект (значения). Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание): 1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа)…

Railway station in Rajasthan, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gandhinagar Jaipur railway station – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Gandhi Nagar Jaipur Indian Railways stationGeneral informationLocationTonk Road…

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個人的…

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКл…

System of rivers and canals running through the city of Chicago 41°53′11″N 87°38′15″W / 41.88639°N 87.63750°W / 41.88639; -87.63750 Chicago RiverChicago River at night in August 2015Map of river and flow directions, before and after re-engineering flow via the canal system. Note the Before does not show the existing Illinois and Michigan Canal (built 1848), which generally did not affect flow direction.LocationCountryUnited StatesStateIllinoisCityChicagoPhysic…

Kembali kehalaman sebelumnya