Well-order

Transitive binary relations
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Total, Semiconnex Anti-
reflexive
Equivalence relation Green tickY Green tickY
Preorder (Quasiorder) Green tickY
Partial order Green tickY Green tickY
Total preorder Green tickY Green tickY
Total order Green tickY Green tickY Green tickY
Prewellordering Green tickY Green tickY Green tickY
Well-quasi-ordering Green tickY Green tickY
Well-ordering Green tickY Green tickY Green tickY Green tickY
Lattice Green tickY Green tickY Green tickY Green tickY
Join-semilattice Green tickY Green tickY Green tickY
Meet-semilattice Green tickY Green tickY Green tickY
Strict partial order Green tickY Green tickY Green tickY
Strict weak order Green tickY Green tickY Green tickY
Strict total order Green tickY Green tickY Green tickY Green tickY
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Definitions, for all and
Green tickY indicates that the column's property is always true the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Green tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.

In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.

Every non-empty well-ordered set has a least element. Every element s of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S.

If ≤ is a non-strict well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a well-founded strict total order. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible.

Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of transfinite induction can be used to prove that a given statement is true for all elements of the set.

The observation that the natural numbers are well ordered by the usual less-than relation is commonly called the well-ordering principle (for natural numbers).

Ordinal numbers

Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The position of each element within the ordered set is also given by an ordinal number. In the case of a finite set, the basic operation of counting, to find the ordinal number of a particular object, or to find the object with a particular ordinal number, corresponds to assigning ordinal numbers one by one to the objects. The size (number of elements, cardinal number) of a finite set is equal to the order type.[1] Counting in the everyday sense typically starts from one, so it assigns to each object the size of the initial segment with that object as last element. Note that these numbers are one more than the formal ordinal numbers according to the isomorphic order, because these are equal to the number of earlier objects (which corresponds to counting from zero). Thus for finite n, the expression "n-th element" of a well-ordered set requires context to know whether this counts from zero or one. In a notation "β-th element" where β can also be an infinite ordinal, it will typically count from zero.

For an infinite set the order type determines the cardinality, but not conversely: well-ordered sets of a particular cardinality can have many different order types (see § Natural numbers, below, for an example). For a countably infinite set, the set of possible order types is uncountable.

Examples and counterexamples

Natural numbers

The standard ordering ≤ of the natural numbers is a well ordering and has the additional property that every non-zero natural number has a unique predecessor.

Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:

This is a well-ordered set of order type ω + ω. Every element has a successor (there is no largest element). Two elements lack a predecessor: 0 and 1.

Integers

Unlike the standard ordering ≤ of the natural numbers, the standard ordering ≤ of the integers is not a well ordering, since, for example, the set of negative integers does not contain a least element.

The following binary relation R is an example of well ordering of the integers: x R y if and only if one of the following conditions holds:

  1. x = 0
  2. x is positive, and y is negative
  3. x and y are both positive, and xy
  4. x and y are both negative, and |x| ≤ |y|

This relation R can be visualized as follows:

R is isomorphic to the ordinal number ω + ω.

Another relation for well ordering the integers is the following definition: if and only if

This well order can be visualized as follows:

This has the order type ω.

Reals

The standard ordering ≤ of any real interval is not a well ordering, since, for example, the open interval does not contain a least element. From the ZFC axioms of set theory (including the axiom of choice) one can show that there is a well order of the reals. Also Wacław Sierpiński proved that ZF + GCH (the generalized continuum hypothesis) imply the axiom of choice and hence a well order of the reals. Nonetheless, it is possible to show that the ZFC+GCH axioms alone are not sufficient to prove the existence of a definable (by a formula) well order of the reals.[2] However it is consistent with ZFC that a definable well ordering of the reals exists—for example, it is consistent with ZFC that V=L, and it follows from ZFC+V=L that a particular formula well orders the reals, or indeed any set.

An uncountable subset of the real numbers with the standard ordering ≤ cannot be a well order: Suppose X is a subset of well ordered by . For each x in X, let s(x) be the successor of x in ordering on X (unless x is the last element of X). Let whose elements are nonempty and disjoint intervals. Each such interval contains at least one rational number, so there is an injective function from A to There is an injection from X to A (except possibly for a last element of X, which could be mapped to zero later). And it is well known that there is an injection from to the natural numbers (which could be chosen to avoid hitting zero). Thus there is an injection from X to the natural numbers, which means that X is countable. On the other hand, a countably infinite subset of the reals may or may not be a well order with the standard . For example,

  • The natural numbers are a well order under the standard ordering .
  • The set has no least element and is therefore not a well order under standard ordering .

Examples of well orders:

  • The set of numbers has order type ω.
  • The set of numbers has order type ω2. The previous set is the set of limit points within the set. Within the set of real numbers, either with the ordinary topology or the order topology, 0 is also a limit point of the set. It is also a limit point of the set of limit points.
  • The set of numbers has order type ω + 1. With the order topology of this set, 1 is a limit point of the set, despite being separated from the only limit point 0 under the ordinary topology of the real numbers.

Equivalent formulations

If a set is totally ordered, then the following are equivalent to each other:

  1. The set is well ordered. That is, every nonempty subset has a least element.
  2. Transfinite induction works for the entire ordered set.
  3. Every strictly decreasing sequence of elements of the set must terminate after only finitely many steps (assuming the axiom of dependent choice).
  4. Every subordering is isomorphic to an initial segment.

Order topology

Every well-ordered set can be made into a topological space by endowing it with the order topology.

With respect to this topology there can be two kinds of elements:

  • isolated points — these are the minimum and the elements with a predecessor.
  • limit points — this type does not occur in finite sets, and may or may not occur in an infinite set; the infinite sets without limit point are the sets of order type ω, for example the natural numbers

For subsets we can distinguish:

  • Subsets with a maximum (that is, subsets that are bounded by themselves); this can be an isolated point or a limit point of the whole set; in the latter case it may or may not be also a limit point of the subset.
  • Subsets that are unbounded by themselves but bounded in the whole set; they have no maximum, but a supremum outside the subset; if the subset is non-empty this supremum is a limit point of the subset and hence also of the whole set; if the subset is empty this supremum is the minimum of the whole set.
  • Subsets that are unbounded in the whole set.

A subset is cofinal in the whole set if and only if it is unbounded in the whole set or it has a maximum that is also maximum of the whole set.

A well-ordered set as topological space is a first-countable space if and only if it has order type less than or equal to ω1 (omega-one), that is, if and only if the set is countable or has the smallest uncountable order type.

See also

References

  1. ^ Bonnet, Rémi; Finkel, Alain; Haddad, Serge; Rosa-Velardo, Fernando (2013). "Ordinal theory for expressiveness of well-structured transition systems". Information and Computation. 224: 1–22. doi:10.1016/j.ic.2012.11.003. MR 3016456.
  2. ^ Feferman, S. (1964). "Some Applications of the Notions of Forcing and Generic Sets". Fundamenta Mathematicae. 56 (3): 325–345. doi:10.4064/fm-56-3-325-345.

Read other articles:

Daging sapi mentah Daging sapi yang telah dipanggang Daging merah merupakan istilah kuliner yang merujuk kepada daging yang berwarna kemerahan. Oxford dictionary menjelaskan bahwa daging merah umumnya adalah daging sapi, daging domba, daging kambing, dan daging kuda. Sedangkan daging ayam, daging kelinci, dan daging babi, serta daging mamalia muda seperti daging sapi muda dan daging domba muda dikategorikan bukan daging merah (daging putih).[1] Secara kimiawi, daging merah berwarna kemer…

Film Z adalah film-film beranggaran rendah yang memiliki kualitas lebih rendah daripada film B. Etimologi Penggunaan terawal dari istilah tersebut (sebagai film kelas-Z, dan tanpa arti penghinaan penuh yang biasanya dimaksudkan sekarang) sejauh ini terletak dalam sebuah ulasan surat kabar Januari 1965 oleh kritikus Kevin Thomas tentang The Tomb of Ligeia (1964), sebuah film American International Pictures yang disutradarai oleh Roger Corman.[1] Lihat pula Daftar film yang dianggap terbur…

Eliza AllenFirst Lady of TennesseeIn officeJanuary 22, 1829 – April 16, 1829GovernorSam HoustonPreceded byCecelia BradfordSucceeded byMary Alexander Personal detailsBorn(1809-12-02)December 2, 1809Gallatin, TennesseeDiedMarch 3, 1861(1861-03-03) (aged 51)Gallatin, TennesseeSpouse(s) Sam Houston ​ ​(m. 1829; div. 1837)​ Elmore Douglass ​(m. 1840)​ Eliza Allen Houston Douglass[a] (December 2, 1809 …

Serie B 1983-1984 Competizione Serie B Sport Calcio Edizione 52ª Organizzatore Lega Nazionale Professionisti Date dall'11 settembre 1983al 10 giugno 1984 Luogo  Italia Partecipanti 20 Formula girone unico Risultati Vincitore Atalanta(4º titolo) Altre promozioni ComoCremonese Retrocessioni PalermoPistoieseCaveseCatanzaro Statistiche Miglior marcatore Marco Pacione (15) I bergamaschi vincitori del torneo Cronologia della competizione 1982-1983 1984-1985 Manuale La Serie B 1983-1984…

Pemilihan umum Presiden Amerika Serikat 2020201620243 November 2020538 anggota Lembaga Elektoral270 Elektor untuk menangKehadiran pemilih65.8%Kandidat   Calon Joe Biden Donald Trump Partai Demokrat Republik Negara bagian Delaware Florida[a] Pendamping Kamala Harris Mike Pence Suara elektoral 306 232 Negara bagian 25 + DC + NE-02 25 + ME-02 Suara rakyat 81,283,501 74,223,975 Persentase 51.3% 46.8% Peta persebaran suara Peta elektoral untuk pemilihan umum 2020. Bir…

Radio station in Balch Springs–Dallas, Texas Not to be confused with KSQY, which brands as K-SKY. Not to be confused with Griffing Sandusky Airport, which used the ICAO code KSKY. KSKY (660 AM) is a commercial radio station licensed to Balch Springs, Texas, and serving the Dallas/Fort Worth Metroplex. It is owned by the Salem Media Group and broadcasts a conservative talk radio format.KSKYBalch Springs, TexasBroadcast areaDallas/Fort Worth MetroplexFrequency660 kHzBranding660 AM The AnswerProg…

Sir Isaiah BerlinOM CBE FBALahir6 Juni 1909Riga, Kegubernuran Livonia, Kekaisaran Rusia (kini Latvia)Meninggal5 November 1997(1997-11-05) (umur 88)Oxford, InggrisAlmamaterCorpus Christi College, OxfordEraFilsafat abad ke-20KawasanFilsafat BaratAliranAnalitis · Liberalisme sosial[1]Institusi New College, Oxford All Souls College, Oxford Wolfson College, Oxford Minat utamaFilsafat politik · Filsafat sejarah · Sejarah ide · Etika…

American actress (born 1982) Jessica BielBiel at the 2013 Cannes Film FestivalBornJessica Claire Biel (1982-03-03) March 3, 1982 (age 42)Ely, Minnesota, U.S.[1]OccupationsActressproducerYears active1991–presentSpouse Justin Timberlake ​(m. 2012)​Children2 Jessica Claire Timberlake (née Biel /biːl/; born March 3, 1982) is an American actress. She has received various accolades, including a Young Artist Award, and nominations for a Primetime Emmy …

Highest mountain in the Arabian Peninsula Jabal An-Nabī ShuʿaybJabal Hadhur[1][2][3] (جَبَل حَضُوْر)Jabal An-Nabi Shu'ayb, a peak in the Haraz Mountains, near Sanaa in YemenHighest pointElevation3,666 m (12,028 ft)[4]Prominence3,311 m (10,863 ft)[4] Ranked 62ndIsolation554 km (344 mi) ListingCountry high pointUltraCoordinates15°16′45″N 43°58′33″E / 15.27917°N 43.97583°E࿯…

Wakil Bupati MalangSatata Gama Karta Rahardja ꦱꦠꦠꦴꦒꦩꦏꦠ꧀ꦠꦂꦫꦲꦗ꧀ꦗꦂ(Menata Semua Untuk Kesejahteraan)PetahanaDrs. H. Didik Gatot Subroto, S.H., M.H.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk24 Oktober 1995Pejabat pertamaSoenyonoSitus webwww.malangkab.go.id Berikut ini adalah daftar Wakil Bupati Malang dari masa ke masa.[1] No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 Drs.Soenyono M.Si. 24 Oktober 1995 26 Oktober 2000 1   Ko…

For the city in China and other uses, see Wuhu. Radio station in Smiths Grove, KentuckyWUHUSmiths Grove, KentuckyBroadcast areaBowling GreenFrequency107.1 MHzBrandingAll Hit WUHU 107ProgrammingFormatTop 40 (CHR)AffiliationsCompass Media NetworksOwnershipOwnerForever Communications, Inc.Sister stationsWLYE-FM, WBVR-FM, WBGNHistoryFirst air dateDecember 1, 1986 (1986-12-01) [1]Call sign meaningWUHU as in woo-hoo! (current branding)Technical informationFacility ID27242ClassC2…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. The Beatles: The Authorised Biography PengarangHunter DaviesBahasaInggrisSubjekThe BeatlesGenreAutobiografiPenerbitHeinemann (Britania Raya), McGraw-Hill (Amerika Serikat)Tanggal terbit17 Agustus 1968[1]Jenis mediaSampul keras; kemudian…

French metaphysician (1886–1951) René Guénon (Abdalwahid Yahia)Portrait from 1925BornRené-Jean-Marie-Joseph Guénon(1886-11-15)15 November 1886Blois, Loir-et-Cher, FranceDied7 January 1951(1951-01-07) (aged 64)Cairo, EgyptEra20th-century philosophyRegionFrench philosophyIslamic philosophyHindu philosophySchoolOrientalism[1]Advaita VedantaSufismNondualismPlatonismTraditionalismMain interestsMetaphysicsSymbologyMythologyEsoterismGnosticismHistoryFreemasonryMathematicsSocial criti…

Pour les articles homonymes, voir Zlatin. Miron ZlatinBiographieNaissance 21 septembre 1904OrchaDécès 31 juillet 1944 (à 39 ans)TallinnNationalité françaiseActivité RésistantConjoint Sabine ZlatinAutres informationsConflit Seconde Guerre mondialeLieu de détention Prison Patarei (en)modifier - modifier le code - modifier Wikidata Miron Zlatin, directeur[1] de la maison d’Izieu[2] dans l'Ain, juif de Russie né à Orcha en 1904, issu d'une famille aisée, est le mari de Sabine Zlati…

RouffycomuneRouffy – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementChâlons-en-Champagne CantoneVertus-Plaine Champenoise TerritorioCoordinate48°56′N 4°06′E / 48.933333°N 4.1°E48.933333; 4.1 (Rouffy)Coordinate: 48°56′N 4°06′E / 48.933333°N 4.1°E48.933333; 4.1 (Rouffy) Superficie5,69 km² Abitanti100[1] (2009) Densità17,57 ab./km² Altre informazioniCod. postale51130 Fuso orarioUTC…

Aluminium fluorida Anhydrous AlF3 Nama Nama lain Aluminium(III) fluoridaAluminum trifluorida Penanda Nomor CAS 7784-18-1 Y32287-65-3 (monohidrat) Y15098-87-0 (trihidrat) Y Model 3D (JSmol) monomer: Gambar interaktifbentuk kristal: Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:49464 Y ChemSpider 2039 Y Nomor EC PubChem CID 2124 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID8030712 InChI InChI=1S/Al.3FH/h;3*1H/q+3;;;/p-3 YKey: KLZUFW…

Umm Al-Hamam (Barat)PermukimanUmm Al-Hamam (Barat)Location in the Kingdom of Saudi ArabiaKoordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Koordinat: 24°38′N 46°43′E / 24.633°N 46.717°E / 24.633; 46.717Negara Arab SaudiPemerintahan • Gubernur Pangeran RiyadhFaisal bin Bandar Al Saud • Wali kotaIbraheem Mohammed Al-SultanKetinggian612 m (2,008 ft)Zona waktuUTC+3 (AST) • …

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Richie Spice – news · newspapers · books · scholar · JSTOR (June 2012) (Learn how and when to remove this message) Richie SpiceRichie Spice in 2019Ba…

2014 television film directed by Paul Hoen How to Build a Better BoyPromotional posterGenreComedyRomanceScience fictionTeenWritten byJason MaylandDirected byPaul HoenStarring China Anne McClain Kelli Berglund Marshall Williams Theme music composerKenneth BurgomasterCountry of originUnited StatesOriginal languageEnglishProductionProducersAdam KossackRobin SchorrDan SeligmanCinematographyDavid A. MakinEditorDon BrochuRunning time109 minutesProduction companiesPrincessa Productions, Ltd.Schorr Pict…

Guardiani della GalassiaI Guardiani della Galassia in una scena del filmTitolo originaleGuardians of the Galaxy Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2014 Durata121 min Rapporto2,35:1 Genereazione, fantascienza, avventura, commedia RegiaJames Gunn Soggettopersonaggi creati da Dan Abnett e Andy Lanningstoria di James Gunn e Nicole Perlman SceneggiaturaJames Gunn, Nicole Perlman ProduttoreKevin Feige Produttore esecutivoLouis D'Esposito, Victoria Alonso, …

Kembali kehalaman sebelumnya