Naissance des étoiles

La naissance des étoiles ou formation stellaire, voire stellogénèse ou stellogonie, est un domaine de recherche en astrophysique, qui consiste en l'étude des modes de formation des étoiles et des systèmes planétaires. Les étoiles en formation sont fréquemment appelées « étoiles jeunes ».

Selon le scénario actuellement admis, confirmé par l'observation, les étoiles se forment en groupe à partir de la contraction gravitationnelle d'une nébuleuse, un nuage de gaz et de poussière, qui se fragmente en plusieurs cœurs protostellaires[1]. Ceux-ci se contractent en leur centre en formant une étoile, tandis que la matière en périphérie se retrouve sous forme d'une enveloppe et d'un disque d'accrétion. Ce dernier disparaît généralement avec le temps, mais, entre-temps, des planètes peuvent s'y former.

Problématique

La formation stellaire est un domaine qui suscite l'intérêt, non seulement en raison des phénomènes complexes et mystérieux qui s'y déroulent comme l'accrétion et l'éjection de matière ou l'émission de rayons X[2], mais aussi parce qu'elle est liée à la « question des origines » : la compréhension de la genèse des étoiles et de leurs systèmes planétaires nous renseignent sur l'histoire du système solaire, et sur la chimie primitive qui eut lieu lors de la formation de la terre et de l'apparition de la vie.

Deux méthodes d'étude sont utilisées pour comprendre la formation du système solaire :

  • la première consiste à « remonter le temps » en utilisant des modèles d'évolution physico-chimique pour en déduire, à partir de ce que nous observons aujourd'hui dans le système solaire, les conditions de sa formation. Ce fut longtemps la seule disponible avant que les régions de formation stellaire ne fussent identifiées après la Seconde Guerre mondiale ;
  • la seconde consiste à observer des systèmes stellaires et planétaires à différents stades de leur évolution afin de déduire quels types de systèmes en formation aboutissent à des systèmes planétaires comparables au nôtre.

Malgré le nombre important d'étoiles jeunes observables aujourd'hui et les progrès en simulation numérique, les étoiles jeunes recèlent encore de nombreux secrets :

  • la formation de planètes est-elle systématique, fréquente ou accidentelle ?
  • quelle quantité de matière était présente dans le disque d'accrétion au moment de leur formation ?

Les processus en jeu sont nombreux et complexes, et certains phénomènes clefs ne sont pas encore maîtrisés par les physiciens :

D'autres processus, bien que mieux compris, ne sont pas encore accessibles dans toute leur complexité aux ordinateurs actuels comme le transfert de rayonnement, qui est nécessaire pour déduire la structure des astres étudiés à partir des propriétés de la lumière observée.

Enfin, les régions stellaires de formation les plus proches se situent à une distance typique d'environ 100 pc (∼326 al), ce qui rend extrêmement difficile l'observation directe des étoiles jeunes et de leur environnement proche : à cette distance, la distance Terre-Soleil, l'unité astronomique, n'est pas résolue, même par les meilleurs télescopes actuels — elle représente une séparation angulaire de 10 millisecondes d'arc (mas) contre un pouvoir de résolution typique de 100 mas en visible et infrarouge proche.

Histoire

L'étude de la formation stellaire, sous sa forme moderne, est récente mais les idées principales remontent à la remise en cause de la vision aristotélicienne du monde durant la Renaissance. Parmi d'autres, Tycho Brahe contribua à changer l'idée de l'immuabilité de la voûte céleste par sa démonstration du caractère translunaire de la supernova de 1572 et d'une comète apparue en 1577, en notant qu'un objet proche devrait changer de position par rapport au fond du ciel selon l'endroit d'où il est observé (phénomène de parallaxe) :

« Il est maintenant clair pour moi qu'il n'existe pas de sphères célestes dans les cieux. Ces dernières ont été construites par des auteurs pour sauver les apparences, n'existant que dans leur imagination, dans le but de permettre à l'esprit de concevoir le mouvement fait par les corps célestes[trad 1]. »

— Tycho Brahe, De mundi aetheri recentioribus phaenomenis[3]

Mais la grande avancée est avant tout la remise en cause du géocentrisme avec Copernic, Galilée et Kepler sur la base, notamment, des observations de Tycho Brahe : la description du mouvement des planètes se simplifie avec une vision héliocentrique, d'une part, et, d'autre part, Galilée observe des satellites de Jupiter. Dès lors, la formation du système solaire devint un objet d'étude non plus théologique mais scientifique. Descartes, dans le Traité du monde et de la lumière (écrit au début des années 1630, publié à titre posthume en 1664), repris par Kant en 1755 dans son Histoire générale de la nature et théorie du ciel, conjecturait que Soleil et planètes ont même origine et se sont formés à partir d'une nébuleuse unique qui se serait contractée[4],[5]. En son sein se serait condensé le Soleil au centre et les planètes dans un disque nébulaire l'environnant. Laplace reprit et améliora le scénario en 1796 : la nébuleuse solaire primitive voit sa rotation accélérer à mesure qu'elle se contracte, ce qui produit un disque tournant autour d'un cœur dense en son centre[6]. Ce disque, en se refroidissant, est le siège d'instabilités et se divise en anneaux qui forment par la suite les planètes ; le cœur devient le Soleil. Cette théorie se heurte toutefois à un problème de taille, à savoir que la conservation du moment angulaire prédit un Soleil tournant beaucoup trop rapidement.

Formation du Système solaire : scénario de la nébuleuse primitive de Laplace.

L'hypothèse concurrente, celle du scénario catastrophique, suggérée par Buffon dans son Histoire naturelle (XVIIIe siècle), acquiert une certaine popularité vers la fin du XIXe siècle ; elle postule que le passage d'une étoile au voisinage du Soleil en aurait arraché un filament de matière générant les planètes[7]. Elle est reprise et formalisée par Jeffreys en 1918. Cette hypothèse s'avéra par la suite douteuse. Russell montra en 1935 qu'une collision avec les vitesses stellaires observées, de l'ordre de quelques dizaines de km/s (typiquement cent mille kilomètres par heure), ne peut permettre d'arracher au Soleil de la matière possédant suffisamment de moment cinétique et Spitzer (1939) que le filament de matière supposément obtenu est instable. Ces études sonnèrent le glas du scénario catastrophique et annoncèrent un retour vers la théorie nébulaire.

Formation du Système solaire : scénario catastrophique de Buffon.
Nébuleuse du cône, zone de formation stellaire. Image mise à disposition par la NASA et le Space Telescope Science Institute.

Le milieu du XXe siècle marqua le début d'une vision moderne de la genèse du Système solaire, en particulier, et de la formation stellaire en général, avec la confirmation de la théorie nébulaire. Dans les années quarante, Joy découvrit des étoiles possédant un comportement « déviant » dans le nuage sombre du Taureau et du Cocher : d'un type spectral caractéristique d'étoiles froides et de très faible masse, elles présentent des raies en émission, de fortes variations de luminosité et une connexion manifeste avec des nébuleuses en absorption ou en émission. Bien que leur nature ne fût pas comprise d'emblée, la découverte allait enfin apporter du grain à moudre, des éléments observationnels, pour la compréhension de la formation stellaire. Leur extrême jeunesse fut rapidement suggérée par Ambartsumian dans la fin des années 1940, mais cela prit un certain temps pour qu'elle fût confirmée et acceptée, dans les années 1960. Un nouveau bond en avant fut permis par le progrès des détecteurs infrarouges dans les années 1960 : Mendoza (1966) découvrit chez ces étoiles un excès infrarouge important difficile à expliquer du seul fait de l'extinction (absorption du rayonnement par de la matière en avant-plan, ce qui se manifeste par un rougissement de la lumière) ; cet excès fut interprété comme la présence d'un disque protoplanétaire accrétant sur l'étoile.

L'image présente un groupe d'étoiles jeunes dans la constellation d'Orion qui se trouvent en avant-plan d'une nébuleuse en émission
Observation de disques en absorption autour d'étoiles jeunes dans la nébuleuse d'Orion. La matière circumstellaire, sous forme d'un disque d'accrétion opaque, se traduit par une tache sombre sur le fond brillant. Image mise à disposition par la NASA et le Space Telescope Institute.
En 2022, le télescope spatial James-Webb capture en infrarouge L1527 IRS, une nébuleuse en train de former une étoile (au centre), dont la taille équivaudrait au Soleil, entourée de son disque protoplanétaire.

Cette hypothèse fut confirmée dans les[années 1990 avec l'obtention d'images de ces disques grâce au télescope spatial Hubble (télescope optique situé en orbite), au VLT en optique adaptative (télescope en lumière visible et infrarouge sis au Chili) et à l'interféromètre millimétrique du Plateau de Bure (radiotélescope situé en France). L'interférométrie optique a permis depuis 1998 de confirmer ces résultats autour d'autres étoiles jeunes et de mesurer le diamètre apparent de dizaines disques proto-planétaires. D'autres structures associées aux étoiles jeunes comme les jets ont été imagées.

Scénario de formation stellaire

Des nébuleuses aux systèmes planétaires

Le scénario actuel de formation des étoiles de faible masse et de masse intermédiaire — jusqu'à quelques masses solaires, soit la grande majorité des étoiles, implique la contraction gravitationnelle d'une nébuleuse ainsi que sa fragmentation, qui crée des « cœurs protostellaires ». Au centre de ceux-ci se forme une étoile qui grossit par accrétion de la matière environnante ; un disque d'accrétion et une enveloppe circumstellaire accompagnent cette étoile. L'accrétion est accompagnée d'éjection d'une partie significative de la matière chutant sur l'étoile sous la forme de jets d'éjection polaires. Dans le disque d'accrétion se forment des corps par agrégation de poussière appelés planétésimaux. Une fois atteinte une masse critique, ces planétésimaux se mettent à leur tour à accréter la matière environnante pour former des planètes. L'accrétion sur l'étoile et les planètes ainsi que l'éjection finissent par épuiser la matière présente autour de l'étoile : celle-ci est alors « nue » et entourée d'un système planétaire.

Les modes de formation stellaire

La formation des étoiles est généralement schématisée par trois modes principaux :

  1. une formation sporadique en systèmes de petite taille, de une à quelques étoiles ;
  2. une formation en groupes d'étoiles d'une dizaine à une centaine de membres, comme dans la région du Taureau et du Cocher (par exemple, L1527 IRS, image à droite) ;
  3. une formation en amas, dans des nuages moléculaires géants, où un grand nombre d'étoiles naissent dans un système dense et gravitationnellement lié, comme dans Orion B.

La différence entre les deux premiers modes et le troisième tient à la densité d'étoiles qui est susceptible d'influer sur le processus de formation stellaire et des premières phases de leur évolution : dans un amas dense, la probabilité est élevée de former des étoiles massives, qui influencent leur environnement par un champ ultraviolet intense et par l'onde de choc au stade de supernova, qui peut survenir avant même que les étoiles de faible masse du même amas aient fini leur formation. De plus, les interactions dynamiques menant à la destruction des disques protoplanétaires, la création et la destruction de systèmes multiples ou la diffusion des planètes sur des orbites excentriques sont beaucoup plus importantes lors de la formation en amas.

La séparation entre ces trois modes est arbitraire et la réalité offre plutôt un continuum allant de la formation de systèmes de quelques étoiles à la formation de centaines de milliers d'étoiles dans les amas globulaires.

Évolution dans le diagramme de Hertzsprung-Russell

Évolution d'une étoile jeune dans le diagramme de Hertzsprung-Russell à partir du moment où elle devient visible (classe II) jusqu'à la séquence principale. L'image illustre les cas d'étoiles de très faible masse (0,1 masse solaire), de masse solaire et de forte masse (10 masses solaires).

Les étoiles jeunes occupent dans le diagramme de Hertzsprung-Russell une zone au-dessus de la séquence principale. Les étoiles de faible masse — typiquement moins de 0,5 masse solaire — finissent ainsi leur formation de manière isotherme tandis que les étoiles de forte masse le font à luminosité constante. Les étoiles de type solaire connaissent, elles, deux phases :
* une phase de contraction isotherme ;
* une phase de contraction à luminosité constante.

Les étoiles jeunes occupent la même zone du diagramme de Hertzsprung-Russell que les étoiles évoluées. En l'absence d'observations complémentant la photométrie visible et proche-infrarouge, il est parfois impossible de les distinguer de ces dernières.

Formation des étoiles de faible masse

La formation de la grande majorité des étoiles, celles de masse solaire ou de plus faible masse, est divisée en quatre phases définies par les propriétés du spectre de ces objets.

Scénario de formation des étoiles de faible masse : les quatre classes observationnelles résumées par Philippe André (1994). À gauche : évolution du spectre au cours de la formation stellaire. Au centre : schéma de la géométrie du système. À droite : Commentaires et ordre de grandeur de l'âge du système.

Au début de leur formation, les protoétoiles sont enfouies dans un environnement de gaz et de poussière (dit enveloppe) qui empêche la lumière visible de nous parvenir ; ces objets ne peuvent être observés que dans le domaine des ondes radio — et des rayons X — qui parviennent à traverser cette enveloppe (classe 0). On nomme cet état globule obscur. À mesure que l'enveloppe s'amincit (classe I) puis disparaît (classe II), les rayonnements infrarouge (provenant notamment du disque d'accrétion) et visible (provenant de l'étoile) finissent par nous parvenir. Lorsque le disque d'accrétion s'amenuise et que s'y forment les planètes, cet excès infrarouge diminue (classe III)[8].

Ces classes observationnelles sont définies de manière statistique, les étoiles jeunes pouvant dévier de ces classes pour différentes raisons. Par exemple :

  • dans les systèmes multiples serrés, la matière circumstellaire est perturbée et peut être dissipée plus rapidement ;
  • certains systèmes de classe II présentent un disque d'accrétion vu par la tranche, dont la matière opaque occulte le rayonnement en visible et proche infrarouge ;
  • certains systèmes de classe II présentent des sursauts d'accrétion importants et rapides — augmentation de la puissance d'accrétion d'un facteur cent en quelques années — qui modifient radicalement l'allure du spectre visible infrarouge.

Formation des étoiles de forte masse

La formation des étoiles de forte masse a lieu au cœur d'amas très denses, ou parfois isolément. On ne sait pas exactement comment se forme une étoile massive. Les modèles théoriques ne parviennent pas encore à expliquer l'existence d'étoiles de plus de huit masses solaires, l'accrétion de matière étant censée être stoppée au-delà de cette masse du fait de la pression de radiation de la proto-étoile.

Hypothèse du modèle physique :

  • collision des disques d'accrétion de protoétoiles de moindre masse ;
  • « accrétion à haute concentration de gaz » via un taux d'accrétion plus fort, permis par le puits de potentiel gravitationnel de l'amas.

Hypothèse du modèle statistique :

  • hasard dans la distribution en masse des étoiles au moment de leur formation (fonction de masse initiale) ;
  • hasard dans la distribution en taille des amas.

Incidences des étoiles massives :

  • Influence sur leur environnement par un champ ultraviolet intense → création de régions d'hydrogène ionisé (ou régions HII) qui peuvent à leur tour abriter de la formation stellaire ;
  • provocation d'une onde de choc au stade de supernova avant même que les étoiles de faible masse aient fini leur formation ;
  • interactions dynamiques importantes provoquant une instabilité du système.

Remarque : On n'observe pas de planètes autour des étoiles massives, car le disque proto-planétaire est balayé par les vents puissants de l'étoile centrale avant même que des planètes aient pu se former.

Observation des étoiles en formation

Scénario actuel de formation des étoiles de faible masse et de masse intermédiaire (la grande majorité) :

  • les pouponnières d'étoiles ;
  • les cœurs protostellaires ;
  • formation des étoiles de type T Tauri ;
  • les éjections de matière ;
  • formation des planétésimaux.

Produits de la formation stellaire

Fonction de masse initiale

L'observation des étoiles de notre environnement proche indique que la plupart sont des étoiles de faible masse, inférieure à celle du Soleil, tandis que les étoiles massives sont rares. La répartition en masse des étoiles formées s'appelle la fonction de masse initiale[9] et constitue un domaine de recherche actif en astrophysique : l'observation dans différents amas de notre Galaxie ainsi que dans des amas extragalactiques (notamment dans les nuages de Magellan) tend à indiquer que cette distribution est universelle et suit la loi de Salpeter : le nombre d'étoiles formées entre les masses et est proportionnel à .

Naines brunes

La formation stellaire ne produit pas uniquement des étoiles : certains objets formés sont trop peu massifs (moins de 8 % de la masse du Soleil) pour pouvoir allumer des réactions nucléaires et sont appelés naines brunes en raison de leur faible luminosité, uniquement due à la chaleur produite par la contraction initiale.

Le mode de formation de ces astres reste encore mystérieux. La fonction de masse substellaire suit une loi inverse à celle de la fonction de masse initiale, à savoir que les naines brunes moins massives sont produites en moins grand nombre que les naines brunes plus massives. Cette différence tend ainsi à indiquer que le mode de formation des naines brunes n'est pas identique à celui des étoiles. Mais la faible proportion de naines brunes en orbite serrée autour d'une étoile semble également invalider l'hypothèse d'une formation de type planétaire : en effet, les planètes sont formées à quelques dizaines d'unités astronomiques (au plus) de « leur » étoile.

Objets libres de masse planétaire

On conjecture également la formation de planètes « libres », c'est-à-dire d'objets de masse et de caractéristiques similaires à celles des planètes, mais formés de même manière que les étoiles — et non dans un disque protoplanétaire.

Notes et références

  1. (en) «  Now it is quite clear to me that there are no solid spheres in the heavens, and those that have been devised by authors to save the appearances, exist only in their imagination, for the purpose of permitting the mind to conceive the motion which the heavenly bodies trace in their courses. »
  1. (en) Evgeny Griv, « Formation of a star and planet around it through a gravitational instability in a disk of gaz and dust », Planetary and space science, Elsevier, vol. 55,‎ , p. 547-568 (résumé)
  2. (en) Mark R. Krumholz, « The big problems in a star formation: The star formation rate, stellar clustering, and the initial mass function », Physics Reports, Elsevier, vol. 539,‎ , p. 49-134 (résumé)
  3. (en) « Astronomy Quotes », sur spacequotations.com.
  4. Descartes 1664, p. 279.
  5. Kant 1755.
  6. Laplace 1796.
  7. Leclerc 1778.
  8. (en) Sun Jin, Tang Ge-shi et Zhang Yan-ping, « Infrared emission and H-R diagram of bright far-infrared sources at the stage of star formation », Chin. Astron. Astrophys, Elsevier, vol. 22, no 2,‎ , p. 179-191 (résumé)
  9. (en) T.N. Rengarajan et Y.D. Mayya, « History of a star formation rate and luminosity density of galaxies », Adances in space research, Elsevier, vol. 34, no 3,‎ , p. 675-678 (résumé)

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Livres

  • René Descartes, Le monde ou traité de la lumière, Victor Cousin, (lire en ligne), « De la formation du Soleil et des étoiles de ce nouveau monde », p. 279. Ouvrage utilisé pour la rédaction de l'article
  • Pierre-Simon Laplace, Exposition du système du monde, Gallica, (lire en ligne). Ouvrage utilisé pour la rédaction de l'article
  • (en) Emmanuel Kant, General History of Nature and Theory of the Heavens, . Ouvrage utilisé pour la rédaction de l'article
  • Georges Louis Leclerc, Histoire naturelle générale et particulière, t. 5, Gallica, (lire en ligne). Ouvrage utilisé pour la rédaction de l'article

Magazines

  • Pour la science, hors-série de  :
    • Jérôme Bouvier et Fabien Malbet, L'environnement des étoiles jeunes
    • Steven Stahler, L'enfance des étoiles, in Pour la science
    • Caroline Terquem et Alain Lecavelier des Étangs, Des disques aux planètes
    • Mohammad Heydari-Malayeri, Pouponnières d'étoiles massives

Revues

Voir aussi

Articles connexes

Liens externes

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Legiun Mangkunegaran – berita · surat kabar · buku · cendekiawan · JSTORLegiun Mangkunegaran prajurit resmi Kadipaten Mangkunegaran. Legiun Mangkunegaran adalah korps angkatan bersenjata Kadipaten Mangkuneg…

Coordinate: 39°42′10″N 44°16′30″E / 39.702778°N 44.275°E39.702778; 44.275 Fotografia dell'anomalia dell'Ararat, scattata dalla Defense Intelligence Agency nel 1949. L'anomalia dell'Ararat è un oggetto non identificato che appare su alcune fotografie, risalenti alla fine degli anni quaranta, delle distese innevate sulla cima del monte Ararat, in Turchia. Alcuni studiosi biblici hanno avanzato l'ipotesi che possa trattarsi dei resti dell'arca di Noè che, secondo il ra…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

Cetacea[1] Periode Eosen awal - sekarang 55–0 jtyl PreЄ Є O S D C P T J K Pg N Cetacea Searah jarum jam dari atas: paus sperma (Physeter macrocephalus), lumba-lumba sungai Amazon (Inia geoffrensis), paus paruh Blainville (Mesoplodon densirostris), paus sikat selatan (Eubalaena australis), narwhal (Monodon monoceros), paus bungkuk (Megaptera novaeangliae), orca (Orcinus orca), paus abu-abu (Eschrichtius robustus) dan pesut pelabuhan (Phocoena phocoena).TaksonomiKerajaanAnimaliaFi…

Yang Dipertuan BesarSyarif Kasim Abdul Jalil SaifuddinSultan Syarif Kasim IISultan Syarif Kasim II Sultan Siak Sri Inderapura 12Masa jabatan1915 – 1946 PendahuluSultan Syarif HasyimPenggantiTengku Muchtar bin Tengku Anum[1][2] Informasi pribadiLahir1 Desember 1893 Siak Sri InderapuraMeninggal23 April 1968(1968-04-23) (umur 74) Pekanbaru, RiauSunting kotak info • L • B Yang Dipertuan Besar Syarif Kasim Abdul Jalil Saifuddin[3] atau Sultan …

ColonelWilliam Gordon CookeBorn(1803-03-26)March 26, 1803Fredericksburg, VirginiaDiedDecember 24, 1847(1847-12-24) (aged 44)Seguin, TexasBuriedTexas State Cemetery, Austin, TexasAllegiance Texas Revolution Republic of Texas State of TexasArmyTexian ArmyArmy of the Republic of TexasTexas Military ForcesYears of service1835–18361836–1837, 1838–18441846–1847RankCaptain 1835Major 1836Colonel 1840UnitNew Orleans Grays 1835–1836Commands heldInspector General 1837Quartermaster Gener…

Ancient Egyptian manuscript Turin King ListCreatedc. 1245 BCEDiscovered1820Luxor, Luxor Governorate, EgyptDiscovered byBernardino DrovettiPresent locationTurin, Piedmont, Italy This article contains Ancient Egyptian Hieroglyphic text. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Egyptian hieroglyphs. The Turin King List, also known as the Turin Royal Canon, is an ancient Egyptian hieratic papyrus thought to date from the reign of Pharaoh Ra…

Vanilla IceVan Winkle pada Februari 2007Informasi latar belakangNama lahirRobert Matthew Van WinkleLahir31 Oktober 1967 (umur 56)Dallas, Texas, A.S.GenreHip hop, rap rock, nu metal[1][2]PekerjaanRapper, actor, record producer, singer, television hostInstrumenBass, drum kit, gitar, keyboardTahun aktif1985–sekarangLabelPsychopathic (2011–sekarang)Radium (2008–2011)Cleopatra (2008)Ultrax (2004–2007)Liquid 8 (2000–2003)Republic/Universal (1996–1999)SBK/EMI (1990–19…

Pour les articles homonymes, voir Ellen Johnson (homonymie), Johnson et Sirleaf. Ellen Johnson Sirleaf Ellen Johnson Sirleaf en 2015. Fonctions Présidente de la république du Liberia 16 janvier 2006 – 22 janvier 2018(12 ans et 6 jours) Élection 8 novembre 2005 Réélection 8 novembre 2011 Vice-président Joseph Boakai Prédécesseur Gyude Bryant (président du gouvernement de transition) Successeur George Weah Ministre libérienne des Finances 1979 – avril 1980(1 an) Secré…

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ранне…

Foundations Baptist Fellowship InternationalAbbreviationFBFIClassificationProtestantOrientationBaptistTheologyFundamentalistPresidentKevin Schaal[1]Origin1967Separated fromConservative Baptist Association of AmericaOther name(s)Fundamental Baptist Fellowship InternationalOfficial websitefbfi.org The Foundations Baptist Fellowship International (FBFI), formerly the Fundamental Baptist Fellowship International, is a fellowship of Independent Fundamental Baptist individuals. History The roo…

Pharaoh of Egypt Senusret ISesostris, SesonchosisStatue of Senusret I in the Cairo Museum, EgyptPharaohReign1971–1926 BC; (1920–1875 BC)PredecessorAmenemhat ISuccessorAmenemhat IIRoyal titulary Horus name Ankhmesutˁnḫ-msw.tLiving of births Nebty name Ankhmesutˁnḫ-msw.tLiving of births Golden Horus Ankhmesutˁnḫ-msw.tLiving of births Turin canon:[...]ka…k3 Prenomen  (Praenomen) KheperkareḪpr-k3-RˁThe Ka of Ra is created Nomen SenusretS(j)-n-WsrtMan of Wosret ConsortN…

Sporting event delegationAustria at the2004 Summer OlympicsIOC codeAUTNOCAustrian Olympic CommitteeWebsitewww.oeoc.at (in German)in AthensCompetitors74 in 18 sportsFlag bearer Roman Hagara[1]MedalsRanked 27th Gold 2 Silver 4 Bronze 1 Total 7 Summer Olympics appearances (overview)189619001904190819121920192419281932193619481952195619601964196819721976198019841988199219962000200420082012201620202024Other related appearances1906 Intercalated Games Austria competed at the 2004 Summ…

Davy Klaassen Informasi pribadiNama lengkap Davy KlaassenTanggal lahir 21 Februari 1993 (umur 31)[1]Tempat lahir Hilversum, BelandaPosisi bermain PenyerangInformasi klubKlub saat ini AjaxNomor 20Karier junior1999–2003 HVV de Zebra's2003–2004 HSV Wasmeer2004–2012 AjaxKarier senior*Tahun Tim Tampil (Gol)2011–2017 Ajax 126 (44)2017–2018 Everton 7 (0)2018–2020 Werder Bremen 57 (9)2020-2023 Ajax 95 (30)2023- Inter Milan 11 (0)Tim nasional‡2009–2010 Belanda U-17 9 (1)2010…

Eric Blom Eric Walter Blom, CBE (Berna, 20 agosto 1888 – Londra, 11 aprile 1959), è stato un lessicografo, musicologo, critico musicale, biografo musicale e traduttore svizzero naturalizzato britannico[1]. È noto soprattutto come curatore della quinta edizione del Grove's Dictionary of Music and Musicians (1954). Indice 1 Biografia 2 Altri scritti 3 Note 4 Bibliografia 5 Collegamenti esterni Biografia Blom nacque a Berna, in Svizzera. Suo padre era di origine danese e britannica e su…

Google FitTangkapan layar Google Fit berjalan di Android 9.0 PieTipeperangkat lunak dan activity tracker Versi pertama28 Oktober 2014; 9 tahun lalu (2014-10-28)GenreInformatika kedokteran, Kebugaran fisikLisensiProprietaryBahasaDaftar bahasa Bulgaria, Katalan, Kroasia, Ceko, Denmark, Belanda, Inggris, Finlandia, Prancis, Jerman, Yunani, Hindi, Hongaria, Indonesia, Italia, Jepang, Korea, Latvia, Lithuania, Melayu, Norwegia, Polandia, Portugis, Rumania, Rusia, Cina Sederhana, Slovakia, Spanyo…

Dragon Ball ZCover dari soundtrack kompilasi pertama Dragon Ball Z yang menampilkan Goku (kiri) dan banyak tokoh lain dari seri iniドラゴンボールZ(Doragon Bōru Zetto)GenreKomedi, Seni bela diri, Sains fiksi AnimeSutradaraDaisuke Nishio (episode 1–199)ProduserKōzō MorishitaKenji ShimizuKoji KanedaSkenarioTakao KoyamaMusikShunsuke KikuchiStudioToei AnimationPelisensiAUS Madman EntertainmentNA Funimation EntertainmentUK Manga EntertainmentTayang 26 April 1989 – 31 Januari 1996 AnimeSt…

American local morning TV news program WGN Morning NewsOpening themeChicago's Very Ownby 615 MusicCountry of originUnited StatesOriginal languageEnglishProductionExecutive producerAline CoxProduction locationsWGN-TV Studios, 2501 W. Bradley Place, Chicago, IllinoisCamera setupVideotape; Multi-cameraRunning time720 minutesProduction company Nexstar Media Group Original releaseNetworkWGN-TVReleaseSeptember 6, 1994 (1994-09-06) –presentRelated WGN Saturday Morning News (1992–1998) WGN…

Sekolah PenerbangTentara Nasional Indonesia Angkatan UdaraDibentuk15 November 1945Negara IndonesiaCabang TNI Angkatan UdaraTipe unitKomando PendidikanBagian dariWing Pendidikan 100/TerbangSitus webwww.kodikau.mil.id Sekolah Penerbang TNI AU atau (Sekbang) adalah pusat pendidikan calon penerbang muda yang dimiliki oleh TNI Angkatan Udara. Sekbang ini merupakan tempat pendidikan dasar kecabangan yang bertujuan untuk mencetak Perwira Penerbang TNI Angkatan Udara lulusan Akademi Angkatan Udara …

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые …

Kembali kehalaman sebelumnya