Dãy Cauchy

(a) Đồ thị của một dãy Cauchy được tô màu xanh, biểu diễn theo . Nếu không gian chứa dãy là đầy đủ thì dãy này có giới hạn.
(b) Dãy này không phải là dãy Cauchy. Các phần tử trong dãy không tiến đến gần nhau tùy ý khi giá trị n tăng dần.

Trong toán học, dãy Cauchy (phát âm tiếng Pháp: ​[koʃi]; tiếng Anh: /ˈkʃ/ KOH-shee), được đặt tên theo nhà toán học Augustin-Louis Cauchy, là dãy mà các phần tử tiến đến gần nhau tùy ý khi dãy tiếp tục.[1] Chính xác hơn, cho bất cứ khoảng cách nhỏ nào, hầu như tất cả các phần tử trong dãy ngoại trừ hữu hạn một số phần tử ra có khoảng cách giữa chúng nhỏ hơn khoảng cách đã cho.

Điều kiện phần tử đứng sau gần tùy ý với phần tử ngay trước đó không phải điều kiện đủ. Ví dụ chẳng hạn, trong dãy căn bậc hai của các số tự nhiên: hai phần tử liên tiếp đó gần với nhau: Tuy nhiên, khi chỉ số n lớn, các phần tử có thể lớn tùy ý. Do đó với bất kỳ chỉ số n và khoảng cách d, tồn tại chỉ số m đủ lớn sao cho (Thật ra chỉ cần là đủ.) Bởi vậy, bất kể dãy chạy tới đâu, các phần tử còn lại không bao giờ tiến gần đến nhau; do đó dãy này không phải dãy Cauchy.

Một ứng dụng của dãy Cauchy nằm trong không gian mêtric đầy đủ (không gian mà các dãy Cauchy trong đó hội tụ đến một giá trị nào đó), điều kiện cho hội tụ chỉ dựa trên các phần tử trong dãy, ngược lại với định nghĩa hội tụ dùng cả giá trị hội tụ và các phần tử trong dãy. Ta thường lợi dụng tính chất này cho các thuật toán trong lý thuyết và áp dụng.

Dạng tổng quát của các dãy Cauchy trong không gian đều tồn tại dưới dạng bộ lọc Cauchymạng Cauchy.

Trong số thực

Dãy của các số thực được gọi là dãy Cauchy nếu với mọi số thực dương tồn tại số nguyên dương N sao cho với mọi số tự nhiên trong đó thanh dọc đứng ký hiệu cho giá trị tuyệt đối. Tương tự như vậy ta có thể định nghĩa cho dãy các số hữu tỉ hoặc dãy các số phức. Cauchy đưa ra điều kiện hiệu phải nhỏ vô cùng với mọi cặp số tự nhiên m, n.

Với mọi số thực r, dãy biểu diễn bị cắt của r tạo thành dãy Cauchy. Ví dụ, khi dãy số được viết như sau: (3, 3.1, 3.14, 3.141, ...). Phần tử thứ m và phần tử thứ n chỉ cách nhau tối đa trong đó m < n, và khi m lớn, giá trị này càng nhỏ hơn bất kỳ giá trị cho trước

Mô đun hội tụ Cauchy

Nếu là dãy số trong tập thì mô đun hội tụ Cauchy cho dãy số là hàm từ tập các số tự nhiên tới chính nó, sao cho với mọi số tự nhiên và số tự nhiên

Các dãy đi cùng với mô đun hội tụ Cauchy là dãy Cauchy. Sự tồn tại mô đun hội tụ Cauchy được suy ra từ tính xếp thứ tự tốt của các số tự nhiên (gọi là số nhỏ nhất trong định nghĩa của dãy Cauchy, đặt ). SỰ tồn tại của mô đun cũng suy ra được từ nguyên lý chọn phụ thuộc,nguyên lý này là dạng yếu hơn của tiên đề chọn, thậm chí ta có thể suy ra từ điều kiện còn yếu hơn được gọi là AC00. Dãy Cauchy chính quy là các dãy đi với mô đun cho trước hội tụ (thường thì hoặc ).

Trong không gian mêtric

Bởi định nghĩa của dãy Cauchy chỉ bao gồm duy nhất khái niệm mêtric, dễ tổng quát định nghĩa này sang cho bất cứ không gian mêtric X. Để làm vậy, giá trị tuyệt đối được thay bằng khoảng cách (trong đó d được gọi là mêtric) giữa

Nói chính xác, cho không gian mêtric dãy là dãy Cauchy, nếu với số thực dương tồn tại số nguyên dương sao cho với mọi số tự nhiên khoảng cách

Nhìn qua, việc các phần tử trong dãy càng tiến đến gần nhau khi các giá trị tăng dần có vẻ gợi ý rằng dãy này có giới hạn nằm trong không gian Song, giá trị giới hạn chưa chắc đã nằm trong X: tính chất của không gian mà tất cả các dãy Cauchy trong đó đều hội tụ được gọi là tính đầy đủ.

Tính đầy đủ

Không gian mêtric (X, d) mà mọi dãy Cauchy trong không gian hội tụ đến một giá trị nằm trong X được gọi là không gian mêtric đầy đủ.

Các ví dụ

Không gian các số thực đầy đủ dưới mêtric của giá trị tuyệt đối, và một trong những cách tiêu chuẩn để xây số thực bao gồm dãy Cauchy của các số hữu tỉ.

Một loại ví dụ khác là không gian Xmêtric rời rạc (trong không gian đó, bất cứ hai phần tử nào khác nhau thì đều có khoảng cách bằng 1).

Ví dụ không phải: số hữu tỉ

Không gian của các số hữu tỉ không đầy đủ (cho mêtric định nghĩa):
Có các dãy số hữu tỉ hội tụ (trong ) đến các giá trị vô tỉ; nghĩa là các dãy Cauchy này không hội tụ đến giá trị thuộc Hơn nữa, nếu x là số vô tỉ, thì dãy số (xn), với phần tử thứ n là biểu diễn n chữ số của x, là dãy Cauchy có giới hạn là số vô tỉ x. Ngoài ra còn có các ví dụ khác về dãy các số hữu tỉ hội tụ về số vô tỉ:

  • Dãy số định nghĩa bởi bao gồm các số hữu tỉ (1, 3/2, 17/12,...) là dãy các số hữu tỉ nhưng giá trị hội tụ của nó là căn bậc hai của hai, để chứng minh xem phương pháp Babylonian cho tính căn bậc hai.
  • Dãy của các phân số của các số Fibonacci liên tiếp nếu có hội tụ thì dãy phải hội tụ đến giá trị thỏa mãn mà không có số hữu tỉ nào thỏa mãn được. Nếu ta coi đây là dãy các số thực thì dãy này hội tụ đến giá trị hay còn gọi là tỷ lệ vàng, giá trị này là số vô tỉ.
  • Các giá trị của hàm mũ , hàm sin và cosin, exp(x), sin(x), cos(x), được biết là số vô tỉ cho mọi số hữu tỉ nhưng mỗi hàm có thể định nghĩa là giới hạn của một dãy Cauchy hữu tỉ, sử dụng chuỗi Maclaurin chẳng hạn.

Ví dụ không phải: khoảng mở

Khoảng mở trong tập các số thực cùng với mêtric tầm thường của không phải là không gian đầy đủ: dãy số nằm trong đó là dãy Cauchy (cho bất cứ cận tất cả các phần tử thỏa mãn đều nằm trong khoảng ), tuy nhiên giá trị giới hạn của dãy không nằm trong — 'giới hạn' của nó, số 0, không nằm trong không gian

Các tính chất khác

  • Tất cả các dãy hội tụ (có giới hạn s) là dãy Cauchy, bởi cho bất kỳ số thực dương , khi vượt qua một điểm cố định nào đó, mọi phần tử trong dãy đều nằm trong khoảng cách của s, do đó bất cứ hai phần tử trong dãy đều cách nhau tối đa .
  • Trong bất cứ không gian mêtric nào, dãy Cauchy bị chặn (bởi cho một số N, tất cả các phần tử từ phần tử thứ N trở đi đều cách nhau 1, và nếu M là khoảng cách lớn nhất giữa và bất cứ các phần tử nào cho tới phần tử thứ N, thì không có cặp phần tử nào trong dãy có khoảng cách lớn hơn đến ).
  • Trong bất cứ không gian mêtric nào, dãy Cauchy nào có dãy con của nó hội tụ đến s thì chính nó cũng hội tụ đến giới hạn s, bởi: cho bất cứ số thực r > 0, khi qua một số điểm cố định nào đó trong dãy gốc, mọi phần tử trong dãy con đều nằm trong khoảng cách r/2 của s, và bất cứ hai phần tử trong dãy gốc đều nằm trong khoảng cách r/2 của nhau, do đó mọi phần tử trong dãy đều nằm trong khoảng cách r của s.

Hai tính chất cuối, cùng với định lý Bolzano–Weierstrass, đưa ra bài chứng minh cho tính đầy đủ của số thực, có liên hệ gần với định lý Bolzano–Weierstrass và định lý Heine–Borel. Mọi dãy Cauchy đều bị chặn, do đó theo định lý Bolzano–Weierstrass trong dãy sẽ có dãy con hội tụ, từ đó suy ra dãy đó cũng sẽ hội tụ. Cách chứng minh này có bao gồm việc sử dụng tiên đề cận trên nhỏ nhất. Một hướng giải khác được nhắc ở trên là xây dựng các số thực bằng hoàn thiện không gian các số hữu tỉ.

Nếu là ánh xạ liên tục đều giữa không gian mêtric MN và (xn) là dãy Cauchy trong M, thì là dãy Cauchy trong N. Nếu là dãy Cauchy trong số hữu tỉ, số thực hoặc số phức, thì tổng và tích cũng là dãy Cauchy.

Tham khảo

  1. ^ Lang 1992.

Liên kết ngoài

Read other articles:

RNA structure Fig. 1. Duck HBV RNA encapsidation signal epsilon Fig. 2. Heron HBV RNA encapsidation signal epsilon AHBV_epsilon cis-regulatory RNA elementPredicted secondary structure and sequence conservation of AHBV_epsilonIdentifiersSymbolAHBV_epsilonRfamRF01313Other dataRNA typeCis-regDomain(s)VirusesGOGO:0019079SOSO:0005836PDB structuresPDBe The Avian HBV RNA encapsidation signal epsilon (AHBV epsilon[1]) is an RNA structure that is shown to facilitate encapsidation of the pregenomi…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Hank BellLahir(1892-01-21)21 Januari 1892Los Angeles, California, Amerika SerikatMeninggal4 Februari 1950(1950-02-04) (umur 58)Hollywood, California, Amerika SerikatPekerjaanPemeranTahun aktif1920-1950 Hank Bell (21 Januari 1892 –…

Biji ketumbar Biji ketumbar adalah biji yang terdapat pada ketumbar. Kegunaannya sebagai bahan tambahan pada makanan dan minuman, dan pembuatan minyak atsiri. Senyawa kimia di dalam biji ketumbar bermanfaat bagi pengobatan penyakit-penyakit pada sistem percernaan. Kandungan Biji ketumbar merupakan salah satu jenis rempah-rempah. Tanaman yang menghasilkan biji ketumbar adalah ketumbar.[1] Biji ketumbar yang telah diekstrak dengan metode penapisan fitokimia mengandung beberapa jenis senyaw…

Likud הַלִּכּוּדKetua umumBenjamin NetanyahuDibentuk1973 (aliansi)1988 (partai)Kantor pusatMetzudat Ze'ev38 King George StreetTel Aviv, IsraelIdeologiKonservatisme bangsa,Liberalisme nasional,[1]Zionisme,Zionisme Revisionis[2][3]Posisi politikKanan-tengah ke Kanan-jauhKnesset29 / 120 Lambang pemiluמחלSitus webwww.likud.org.ilPolitik IsraelPartai politik Likud (Ibrani: הַלִּכּוּדcode: he is deprecated HaLikud; secara harafiah berarti konsolidasi…

The Jungle BookPoster film The Jungle BookSutradaraJon FavreauProduserJon FavreauBrigham TaylorDitulis olehJustin MarksBerdasarkanThe Jungle Bookoleh Rudyard KiplingPemeranNeel SethiBill MurrayBen KingsleyIdris ElbaLupita Nyong'oScarlett JohanssonChristopher WalkenGiancarlo EspositoNaratorBen KingsleyPenata musikJohn DebneySinematograferBill PopePenyuntingMark LivolsiPerusahaanproduksiWalt Disney PicturesFairview EntertainmentDistributorWalt Disney Studios Motion PicturesTanggal rilis 4 Ap…

Federasi Sepak Bola RumaniaUEFADidirikan1909Bergabung dengan FIFA1923Bergabung dengan UEFA1954PresidenRăzvan BurleanuWebsitewww.frf.ro Federasi Sepak Bola Rumania (bahasa Rumania: Federaţia Română de Fotbal (FRF)) adalah badan pengendali sepak bola di Rumania. Kompetisi Badan ini menyelenggarakan beberapa kompetisi di Rumania, yakni: Liga I Liga II Liga III Liga IV Piala Rumania Piala Liga Rumania Piala Super Rumania Tim nasional Badan ini juga merupakan badan pengendali dari 3 tim nasio…

Boletus Boletus edulis Klasifikasi ilmiah Kerajaan: Fungi Divisi: Basidiomycota Kelas: Agaricomycetes Ordo: Boletales Famili: Boletaceae Genus: BoletusL. (1753) Spesies tipe Boletus edulisBull. (1782) Diversitas lebih dari 100 spesies Sinonim[1][2] Suillus P.Micheli ex Adans. (1763) Tubiporus P.Karst. (1881) Suillus Haller ex Kuntze (1898) Oedipus Bataille (1908) Ceriomyces Murrill (1909) Xerocomopsis Reichert (1940) Notholepiota E.Horak (1971) Boletus sp (Boletaceae) adalah jamu…

Untuk film, lihat Robert Koch (film). Robert KochLahirRobert Heinrich Herman Koch(1843-12-11)11 Desember 1843Clausthal, Kerajaan HanoverMeninggal27 Mei 1910(1910-05-27) (umur 66)Baden-Baden, Kadipaten Agung BadenKebangsaanJermanAlmamaterUniversitas GöttingenDikenal atasPenemuan bakteriologiTeori kuman postulat KochIsolasi antraks, tuberkulosis, dan koleraSuami/istriEmmy Fraaze (1866), Hedwig Freiberg (1893)Penghargaan ForMemRS (1897)[1] Penghargaan Nobel dalam Fisiologi atau Kedokt…

2013 defunct proposed agreement 17 December 2013 Russian–Ukrainian action planRussian President Putin and Ukrainian President Yanukovych signing a joint bilateral programme of celebrations for the 200th anniversary of the birth of Taras Shevchenko in 2014 on 17 December 2013TypeAction planSignedDecember 17, 2013LocationMoscow, RussiaSignatories Vladimir Putin Viktor YanukovychLanguagesRussian and Ukrainian The 17 December 2013 Russian–Ukrainian action plan was a de facto defunct[1]&#…

Bentuk asli dari nama pribadi ini adalah Kim Yun-jin. Artikel ini menggunakan rangkaian nama Barat. Ini adalah nama Korea; marganya adalah Kim. Yunjin KimLahirKim Yun-Jin7 November 1974 (umur 49)Seoul,  Korea SelatanAlmamaterUniversitas BostonPekerjaan Aktris Tahun aktif1996–sekarangSuami/istriJeong Park ​(m. 2010)​Nama KoreaHangul김윤진 Hanja金侖珍 Alih AksaraGim YunjinMcCune–ReischauerKim Yunjin Yunjin Kim (Hangul: 김윤진; lahir 7 Novemb…

Eurovision Song Contest 2020Country San MarinoNational selectionSelection processArtist: Internal selectionSong: Digital BattleSelection date(s)Artist: 6 March 2020Song: 9 March 2020Selected entrantSenhitSelected songFreaky!Selected songwriter(s)Gianluigi FazioHenrik Steen HansenNanna BottosFinals performanceFinal resultContest cancelledSan Marino in the Eurovision Song Contest ◄2019 • 2020 • 2021► San Marino planned to participate in the Eurovision Son…

College basketball tournament 2003 Big Ten men's basketball tournamentClassificationDivision ISeason2002–03Teams11SiteUnited CenterChicago, IllinoisChampionsIllinois Fighting Illini (1st title)Winning coachBill Self (1st title)MVPBrian Cook (Illinois)Big Ten men's basketball tournaments← 20022004 → 2002–03 Big Ten Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT No. 21 Wisconsin 12 – 4   .75…

Странный человек Жанр драма Автор М. Ю. Лермонтов Язык оригинала русский Дата написания 1831 Текст произведения в Викитеке Цитаты в Викицитатнике «Романтический человек» — романтическая драма Михаила Лермонтова, написанная в 1831 году. Впервые полностью опубликована пос…

Western Hockey League team in Red Deer, Alberta This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be written from a fan's point of view, rather than a neutral point of view. Please clean it up to conform to a higher standard of quality, and to make it neutral in tone. (February 2018) (Learn how and when to remove this template message) This article contains wording that promot…

American musician J MascisJ Mascis at Virgin Festival in 2009Background informationBirth nameJoseph Donald Mascis Jr.Born (1965-12-10) December 10, 1965 (age 58)Amherst, Massachusetts, U.S.GenresAlternative rockindie rockhard rocknoise rockhardcore punkstoner rockdoom metalOccupation(s)MusiciansingersongwriterInstrument(s)VocalsguitardrumsbasskeyboardsYears active1982–presentMember ofDinosaur Jr.Formerly of J Mascis + The Fog Mascis & Friends Witch Deep Wound Upsidedown Cross Sweet Ap…

Annual LGBTQ+ event in Singapore Pink Dot SGThe LGBT community converging at Hong Lim Park in Singapore for Pink Dot SG in 2014StatusActiveGenreLGBTDates16 May 2009 (2009-05-16)15 May 2010 (2010-05-15)18 June 2011 (2011-06-18)30 June 2012 (2012-06-30)29 June 2013 (2013-06-29)28 June 2014 (2014-06-28)13 June 2015 (2015-06-13)4 June 2016 (2016-06-04)1 July 2017 (20…

  لمعانٍ أخرى، طالع السودان (توضيح).   جمهورية السودان جمهورية السودان  السودانعلم السودان السودانشعار السودان   الشعار الوطنيالنصر لنا  النشيد: نحن جند الله جند الوطن الأرض والسكان إحداثيات 15°N 32°E / 15°N 32°E / 15; 32   [1] أعلى قمة جبل مرة (3,042 متر) …

French alpine skier Marielle Goitschel Marielle Goitschel Medal record Women's alpine skiing Representing  France Olympic Games 1964 Innsbruck Giant Slalom 1968 Grenoble Slalom 1964 Innsbruck Slalom World Championships 1962 Chamonix Combined 1964 Innsbruck Combined 1964 Innsbruck Giant Slalom 1966 Portillo Combined 1966 Portillo Giant Slalom 1966 Portillo Downhill 1968 Grenoble Slalom 1962 Chamonix Slalom 1964 Innsbruck Slalom 1966 Portillo Slalom 1968 Grenoble Combined Marielle Goitschel (…

1970 British comedy film by Gerald Thomas This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2018) (Learn how and when to remove this message) Carry On LovingOriginal UK quad poster by Renato FratiniDirected byGerald ThomasWritten byTalbot RothwellProduced byPeter RogersStarringSid JamesKenneth WilliamsCharles HawtreyJoan SimsHattie JacquesTerry ScottRichar…

English politician This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Edward Barrett, 1st Lord Barrett of Newburgh – news · newspapers · books · scholar · JSTOR (September 2013)Edward Barrett, 1st Lord Barrett of Newburghportrait by Cornelius JanssenBorn21 June 1581 DiedDecember 1644  (aged 62…

Kembali kehalaman sebelumnya