Hasse principle

In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the p-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers and in the p-adic numbers for each prime p.

Intuition

Given a polynomial equation with rational coefficients, if it has a rational solution, then this also yields a real solution and a p-adic solution, as the rationals embed in the reals and p-adics: a global solution yields local solutions at each prime. The Hasse principle asks when the reverse can be done, or rather, asks what the obstruction is: when can you patch together solutions over the reals and p-adics to yield a solution over the rationals: when can local solutions be joined to form a global solution?

One can ask this for other rings or fields: integers, for instance, or number fields. For number fields, rather than reals and p-adics, one uses complex embeddings and -adics, for prime ideals .

Forms representing 0

Quadratic forms

The Hasse–Minkowski theorem states that the local–global principle holds for the problem of representing 0 by quadratic forms over the rational numbers (which is Minkowski's result); and more generally over any number field (as proved by Hasse), when one uses all the appropriate local field necessary conditions. Hasse's theorem on cyclic extensions states that the local–global principle applies to the condition of being a relative norm for a cyclic extension of number fields.

Cubic forms

A counterexample by Ernst S. Selmer shows that the Hasse–Minkowski theorem cannot be extended to forms of degree 3: The cubic equation 3x3 + 4y3 + 5z3 = 0 has a solution in real numbers, and in all p-adic fields, but it has no nontrivial solution in which x, y, and z are all rational numbers.[1]

Roger Heath-Brown showed[2] that every cubic form over the integers in at least 14 variables represents 0, improving on earlier results of Davenport.[3] Since every cubic form over the p-adic numbers with at least ten variables represents 0,[2] the local–global principle holds trivially for cubic forms over the rationals in at least 14 variables.

Restricting to non-singular forms, one can do better than this: Heath-Brown proved that every non-singular cubic form over the rational numbers in at least 10 variables represents 0,[4] thus trivially establishing the Hasse principle for this class of forms. It is known that Heath-Brown's result is best possible in the sense that there exist non-singular cubic forms over the rationals in 9 variables that do not represent zero.[5] However, Hooley showed that the Hasse principle holds for the representation of 0 by non-singular cubic forms over the rational numbers in at least nine variables.[6] Davenport, Heath-Brown and Hooley all used the Hardy–Littlewood circle method in their proofs. According to an idea of Manin, the obstructions to the Hasse principle holding for cubic forms can be tied into the theory of the Brauer group; this is the Brauer–Manin obstruction, which accounts completely for the failure of the Hasse principle for some classes of variety. However, Skorobogatov has shown that the Brauer–Manin obstruction cannot explain all the failures of the Hasse principle.[7]

Forms of higher degree

Counterexamples by Fujiwara and Sudo show that the Hasse–Minkowski theorem is not extensible to forms of degree 10n + 5, where n is a non-negative integer.[8]

On the other hand, Birch's theorem shows that if d is any odd natural number, then there is a number N(d) such that any form of degree d in more than N(d) variables represents 0: the Hasse principle holds trivially.

Albert–Brauer–Hasse–Noether theorem

The Albert–Brauer–Hasse–Noether theorem establishes a local–global principle for the splitting of a central simple algebra A over an algebraic number field K. It states that if A splits over every completion Kv then it is isomorphic to a matrix algebra over K.

Hasse principle for algebraic groups

The Hasse principle for algebraic groups states that if G is a simply-connected algebraic group defined over the global field k then the map

is injective, where the product is over all places s of k.

The Hasse principle for orthogonal groups is closely related to the Hasse principle for the corresponding quadratic forms.

Kneser (1966) and several others verified the Hasse principle by case-by-case proofs for each group. The last case was the group E8 which was only completed by Chernousov (1989) many years after the other cases.

The Hasse principle for algebraic groups was used in the proofs of the Weil conjecture for Tamagawa numbers and the strong approximation theorem.

See also

Notes

  1. ^ Ernst S. Selmer (1951). "The Diophantine equation ax3 + by3 + cz3 = 0". Acta Mathematica. 85: 203–362. doi:10.1007/BF02395746.
  2. ^ a b D.R. Heath-Brown (2007). "Cubic forms in 14 variables". Invent. Math. 170 (1): 199–230. Bibcode:2007InMat.170..199H. doi:10.1007/s00222-007-0062-1. S2CID 16600794.
  3. ^ H. Davenport (1963). "Cubic forms in sixteen variables". Proceedings of the Royal Society A. 272 (1350): 285–303. Bibcode:1963RSPSA.272..285D. doi:10.1098/rspa.1963.0054. S2CID 122443854.
  4. ^ D. R. Heath-Brown (1983). "Cubic forms in ten variables". Proceedings of the London Mathematical Society. 47 (2): 225–257. doi:10.1112/plms/s3-47.2.225.
  5. ^ L. J. Mordell (1937). "A remark on indeterminate equations in several variables". Journal of the London Mathematical Society. 12 (2): 127–129. doi:10.1112/jlms/s1-12.1.127.
  6. ^ C. Hooley (1988). "On nonary cubic forms". Journal für die reine und angewandte Mathematik. 386: 32–98.
  7. ^ Alexei N. Skorobogatov (1999). "Beyond the Manin obstruction". Invent. Math. 135 (2): 399–424. arXiv:alg-geom/9711006. Bibcode:1999InMat.135..399S. doi:10.1007/s002220050291. S2CID 14285244.
  8. ^ M. Fujiwara; M. Sudo (1976). "Some forms of odd degree for which the Hasse principle fails". Pacific Journal of Mathematics. 67 (1): 161–169. doi:10.2140/pjm.1976.67.161.

References

External links

Read other articles:

Negara Bagian Kachin ကခ်င္ျပည္နယ္Wunpawng MungdanNegara Bagian BenderaLokasi Kachin State di MyanmarKoordinat: 26°0′N 97°30′E / 26.000°N 97.500°E / 26.000; 97.500Koordinat: 26°0′N 97°30′E / 26.000°N 97.500°E / 26.000; 97.500Negara MyanmarWilayahSebelah Utara (Northern)IbukotaMyitkyinaPemerintahan • Kepala MenteriKhat Aung (NLD) • KabinetKachin State Government • Legisl…

AuriollesAuriolles Koordinat: 44°44′33″N 0°03′02″E / 44.7425°N 0.0505555555556°E / 44.7425; 0.0505555555556NegaraPrancisArondisemenLangonKantonPellegrueAntarkomunePays de PellegruePemerintahan • Wali kota (2008-2014) Danielle Blanchard Clamens • Populasi1117Kode INSEE/pos33020 / 2 Population sans doubles comptes: penghitungan tunggal penduduk di komune lain (e.g. mahasiswa dan personil militer). Auriolles merupakan sebuah komune di…

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Sud…

Daddy's HomePoster resmiSutradaraSean AndersProduser Will Ferrell Adam McKay Chris Henchy John Morris Skenario Brian Burns Sean Anders John Morris CeritaBrian BurnsPemeran Will Ferrell Mark Wahlberg Linda Cardellini Thomas Haden Church Hannibal Buress Bobby Cannavale Penata musikMichael AndrewsSinematograferJulio MacatPenyunting Eric Kissack Brad Wilhite Perusahaanproduksi Red Granite Pictures Gary Sanchez Productions DistributorParamount PicturesTanggal rilis 9 Desember 2015 (2015-12…

Apriona rixator Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Apriona Spesies: Apriona rixator Apriona rixator adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Apriona, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang…

Painting by Carl Spitzweg The BookwormArtistCarl SpitzwegYearc. 1850MediumOil-on-canvasDimensions49.5 cm × 26.8 cm (19+1⁄2 in × 10+1⁄2 in)LocationMuseum Georg Schäfer, Schweinfurt, Germany The Bookworm (German: Der Bücherwurm) is an oil-on-canvas painting by the German painter and poet Carl Spitzweg. The picture was made c. 1850 and is typical of Spitzweg's humorous, anecdotal style and it is characteristic of Biedermeier art …

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Farmer opera – news · newspapers · books · scholar · JSTOR (June 2016) (Learn how and when to remove this template message) The FarmerWritten byJohn O'KeeffeDate premiered31 October 1787Place premieredCovent Garden TheatreOriginal languageEnglishGenreCome…

MIT beralih ke halaman ini. Untuk organisasi teroris, lihat Mujahidin Indonesia Timur.Institut Teknologi MassachusettsMassachusetts Institute of TechnologyMotoMens et ManusJenisSwastaDidirikan10 April 1861; 162 tahun lalu (1861-04-10) (dibuka 1865)Dana abadiUS $8.3 miliarKanselirEric GrimsonPresidenSusan HockfieldProvosL. Rafael ReifStaf akademik1,009Jumlah mahasiswa10,384Sarjana4,232Magister6,152LokasiCambridge, Massachusetts, Amerika SerikatKampusUrban, 168 areNobel Laureates76WarnaCardin…

Cet article est une ébauche concernant un militaire britannique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Blood. Thomas BloodBiographieNaissance 1618Comté de ClareDécès 23 août 1680WestminsterÉpoque Génération du XVIIe siècle (d)Activité SoldatPère Thomas Blood (d)Conjoint Mary Holcroft (d) (à partir de 1650)Enfants Thomas Blood (d)Edmund Blood (d)Charles Blood (d…

Football match1932 Copa de Competencia (LAF) FinalA River Plate team of 1932EventCopa Competencia (LAF) River Plate Estudiantes (LP) 3 1 DateDecember 4, 1932VenueSan LorenzoRefereeEduardo Forte1933 → The 1932 Copa de Competencia Final was the final that decide the winner of the 1st edition of Copa de Competencia, an Argentine domestic cup organised by dissident body Liga Argentina de Football, the first professional league of Argentina.[1] The final was held in San Lorenzo de Almag…

The 5th Horseman First edition coverAuthorJames Patterson and Maxine PaetroCountryUnited StatesLanguageEnglishSeriesWomen's Murder ClubGenreThriller, Mystery novelPublished2006 (Little, Brown)Media typePrint (hardcover)Pages410 pp (first edition, hardback)ISBN978-0-316-15977-7OCLC61162187Dewey Decimal813/.54 22LC ClassPS3566.A822 A6154 2006Preceded by4th of July Followed byThe 6th Target  The 5th Horseman is the fifth book in the Women's Murder Club series featuring…

The MizThe Miz di bulan Maret 2015Nama lahirMichael Gregory MizaninLahir8 Oktober 1980 (umur 43)[1]Parma, Ohio, Amerika Serikat[1][2]Tempat tinggalLos Angeles, Kalifornia, Amerika SerikatAlma materMiami UniversityPasanganMaryse Ouellet ​(m. invalid year)​Karier gulat profesionalNama ringThe Calgary Kid[3][4]The MizMike MizaninTinggi6 ft 2 in (1,88 m)[5]Berat221 pon (100 kg)[5]Asal d…

Area or place where important military events occur or are progressing Theater of war and Theatre of war redirect here. For other uses, see Theatre of War (disambiguation). Part of a series onWar History Prehistoric Ancient Post-classical Early modern napoleonic Late modern industrial fourth-gen Military Organization Command and control Defense ministry Army Navy Air force Marines Coast guard Space force Reserves Regular / Irregular Ranks Specialties: Staff Engineers Intelligence Reconnaissance …

أنصار نظرية حدوة الفرس يزعمون بأن اليسار المتطرف واليمين المتطرف هما أقرب لبعضهما من المعتدل السياسي. في الفلسفة السياسية، نظرية حدوة الفرس تفترض أن أقصى اليسار وأقصى اليمين، بدلا من أن يكونا على طرفي نقيض لطيف سياسي خطي استمراري، فهما في الواقع يشبه أحدهما با…

Film directed by Leslie H. Martinson Batman: The Movie redirects here. For the video game, see Batman (1989 video game). BatmanTheatrical release posterDirected byLeslie H. MartinsonWritten byLorenzo Semple Jr.Based onBatmanby Bob Kane (credited) andBill Finger (uncredited)Produced byWilliam DozierStarring Adam West Burt Ward Lee Meriwether Cesar Romero Burgess Meredith Frank Gorshin CinematographyHoward SchwartzEdited byHarry GerstadMusic byNelson RiddleProductioncompanyGreenlawn ProductionsDis…

العلاقات التوفالية الميانمارية توفالو ميانمار   توفالو   ميانمار تعديل مصدري - تعديل   العلاقات التوفالية الميانمارية هي العلاقات الثنائية التي تجمع بين توفالو وميانمار.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم…

Logo Dewan Kerajinan Nasional Dewan Kerajinan Nasional (DEKRANAS), adalah organisasi nirlaba yang menghimpun pencinta dan peminat seni untuk memayungi dan mengembangkan produk kerajinan dan mengembangkan usaha tersebut, serta berupaya meningkatkan kehidupan pelaku bisnisnya, yang sebagian merupakan kelompok usaha kecil dan menengah (UKM). Sejarah Kerajinan sebagai suatu perwujudan perpaduan ketrampilan untuk menciptakan suatu karya dan nilai keindahan, merupakan bagian yang tidak terpisahkan dar…

Consonantal sound represented by ⟨ⱱ̟⟩ or ⟨b̆⟩ in IPA Voiced bilabial flapⱱ̟b̆IPA Number184 413Audio sample source · helpEncodingEntity (decimal)ⱱ​̟Unicode (hex)U+2C71 U+031F Image The voiced bilabial flap is an uncommon non-rhotic flap. It is usually, and perhaps always, an allophone of the labiodental flap, though it is the preferred allophone in a minority of languages such as Banda and some of its neighbors. In Mono, the sound ha…

CoranoRiproduzione del Corano, con commento (tafsīr) in margine AutoreVari autori (kuttab che ascoltarono Maometto) 1ª ed. originaleVII secolo d.C. Generetesto sacro Lingua originalearabo AmbientazioneArabia Modifica dati su Wikidata · Manuale La Sūra al-Fātiḥa del Corano scritta su una scapola di un dromedario.Per concessione della Princeton University Library, Department of Rare Books and Special Collections (Manuscripts Division, Islamic Third Series, no. 295) Il Corano (in a…

  لمعانٍ أخرى، طالع ألان هنتر (توضيح). ألان هنتر   معلومات شخصية الميلاد 30 يونيو 1946 (العمر 77 سنة) مركز اللعب مدافع الجنسية المملكة المتحدة  مسيرة الشباب سنوات فريق كوليرين المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1962–1966 كوليرين 97 (2) 1966–1969 أولدهام أثلتيك 83 (1) 1969–1972 بلاكبي…

Kembali kehalaman sebelumnya