Partition of a set

A set of stamps partitioned into bundles: No stamp is in two bundles, no bundle is empty, and every stamp is in a bundle.
The 52 partitions of a set with 5 elements. A colored region indicates a subset of X that forms a member of the enclosing partition. Uncolored dots indicate single-element subsets. The first shown partition contains five single-element subsets; the last partition contains one subset having five elements.
The traditional Japanese symbols for the 54 chapters of the Tale of Genji are based on the 52 ways of partitioning five elements (the two red symbols represent the same partition, and the green symbol is added for reaching 54).[1]

In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory.

Definition and notation

A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets[2] (i.e., the subsets are nonempty mutually disjoint sets).

Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold:[3]

  • The family P does not contain the empty set (that is ).
  • The union of the sets in P is equal to X (that is ). The sets in P are said to exhaust or cover X. See also collectively exhaustive events and cover (topology).
  • The intersection of any two distinct sets in P is empty (that is ). The elements of P are said to be pairwise disjoint or mutually exclusive. See also mutual exclusivity.

The sets in are called the blocks, parts, or cells, of the partition.[4] If then we represent the cell containing by . That is to say, is notation for the cell in which contains .

Every partition may be identified with an equivalence relation on , namely the relation such that for any we have if and only if (equivalently, if and only if ). The notation evokes the idea that the equivalence relation may be constructed from the partition. Conversely every equivalence relation may be identified with a partition. This is why it is sometimes said informally that "an equivalence relation is the same as a partition". If P is the partition identified with a given equivalence relation , then some authors write . This notation is suggestive of the idea that the partition is the set X divided in to cells. The notation also evokes the idea that, from the equivalence relation one may construct the partition.

The rank of is , if is finite.

Examples

  • The empty set has exactly one partition, namely . (Note: this is the partition, not a member of the partition.)
  • For any non-empty set X, P = { X } is a partition of X, called the trivial partition.
    • Particularly, every singleton set {x} has exactly one partition, namely { {x} }.
  • For any non-empty proper subset A of a set U, the set A together with its complement form a partition of U, namely, { A, UA }.
  • The set {1, 2, 3} has these five partitions (one partition per item):
    • { {1}, {2}, {3} }, sometimes written 1 | 2 | 3.
    • { {1, 2}, {3} }, or 1 2 | 3.
    • { {1, 3}, {2} }, or 1 3 | 2.
    • { {1}, {2, 3} }, or 1 | 2 3.
    • { {1, 2, 3} }, or 123 (in contexts where there will be no confusion with the number).
  • The following are not partitions of {1, 2, 3}:
    • { {}, {1, 3}, {2} } is not a partition (of any set) because one of its elements is the empty set.
    • { {1, 2}, {2, 3} } is not a partition (of any set) because the element 2 is contained in more than one block.
    • { {1}, {2} } is not a partition of {1, 2, 3} because none of its blocks contains 3; however, it is a partition of {1, 2}.

Partitions and equivalence relations

For any equivalence relation on a set X, the set of its equivalence classes is a partition of X. Conversely, from any partition P of X, we can define an equivalence relation on X by setting x ~ y precisely when x and y are in the same part in P. Thus the notions of equivalence relation and partition are essentially equivalent.[5]

The axiom of choice guarantees for any partition of a set X the existence of a subset of X containing exactly one element from each part of the partition. This implies that given an equivalence relation on a set one can select a canonical representative element from every equivalence class.

Refinement of partitions

Partitions of a 4-element set ordered by refinement

A partition α of a set X is a refinement of a partition ρ of X—and we say that α is finer than ρ and that ρ is coarser than α—if every element of α is a subset of some element of ρ. Informally, this means that α is a further fragmentation of ρ. In that case, it is written that αρ.

This "finer-than" relation on the set of partitions of X is a partial order (so the notation "≤" is appropriate). Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice.[6][7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.

The meet and join of partitions α and ρ are defined as follows. The meet is the partition whose blocks are the intersections of a block of α and a block of ρ, except for the empty set. In other words, a block of is the intersection of a block of α and a block of ρ that are not disjoint from each other. To define the join , form a relation on the blocks A of α and the blocks B of ρ by A ~ B if A and B are not disjoint. Then is the partition in which each block C is the union of a family of blocks connected by this relation.

Based on the equivalence between geometric lattices and matroids, this lattice of partitions of a finite set corresponds to a matroid in which the base set of the matroid consists of the atoms of the lattice, namely, the partitions with singleton sets and one two-element set. These atomic partitions correspond one-for-one with the edges of a complete graph. The matroid closure of a set of atomic partitions is the finest common coarsening of them all; in graph-theoretic terms, it is the partition of the vertices of the complete graph into the connected components of the subgraph formed by the given set of edges. In this way, the lattice of partitions corresponds to the lattice of flats of the graphic matroid of the complete graph.

Another example illustrates refinement of partitions from the perspective of equivalence relations. If D is the set of cards in a standard 52-card deck, the same-color-as relation on D – which can be denoted ~C – has two equivalence classes: the sets {red cards} and {black cards}. The 2-part partition corresponding to ~C has a refinement that yields the same-suit-as relation ~S, which has the four equivalence classes {spades}, {diamonds}, {hearts}, and {clubs}.

Noncrossing partitions

A partition of the set N = {1, 2, ..., n} with corresponding equivalence relation ~ is noncrossing if it has the following property: If four elements a, b, c and d of N having a < b < c < d satisfy a ~ c and b ~ d, then a ~ b ~ c ~ d. The name comes from the following equivalent definition: Imagine the elements 1, 2, ..., n of N drawn as the n vertices of a regular n-gon (in counterclockwise order). A partition can then be visualized by drawing each block as a polygon (whose vertices are the elements of the block). The partition is then noncrossing if and only if these polygons do not intersect.

The lattice of noncrossing partitions of a finite set forms a subset of the lattice of all partitions, but not a sublattice, since the join operations of the two lattices do not agree.

The noncrossing partition lattice has taken on importance because of its role in free probability theory.

Counting partitions

The total number of partitions of an n-element set is the Bell number Bn. The first several Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203 (sequence A000110 in the OEIS). Bell numbers satisfy the recursion

and have the exponential generating function

Construction of the Bell triangle

The Bell numbers may also be computed using the Bell triangle in which the first value in each row is copied from the end of the previous row, and subsequent values are computed by adding two numbers, the number to the left and the number to the above left of the position. The Bell numbers are repeated along both sides of this triangle. The numbers within the triangle count partitions in which a given element is the largest singleton.

The number of partitions of an n-element set into exactly k (non-empty) parts is the Stirling number of the second kind S(n, k).

The number of noncrossing partitions of an n-element set is the Catalan number

See also

Notes

  1. ^ Knuth, Donald E. (2013), "Two thousand years of combinatorics", in Wilson, Robin; Watkins, John J. (eds.), Combinatorics: Ancient and Modern, Oxford University Press, pp. 7–37
  2. ^ Halmos, Paul (1960). Naive Set Theory R. Springer. p. 28. ISBN 9780387900926.
  3. ^ Lucas, John F. (1990). Introduction to Abstract Mathematics. Rowman & Littlefield. p. 187. ISBN 9780912675732.
  4. ^ Brualdi 2004, pp. 44–45.
  5. ^ Schechter 1997, p. 54.
  6. ^ Birkhoff, Garrett (1995), Lattice Theory, Colloquium Publications, vol. 25 (3rd ed.), American Mathematical Society, p. 95, ISBN 9780821810255.
  7. ^ *Stern, Manfred (1999), Semimodular Lattices. Theory and Applications, Encyclopedia of Mathematics and its Applications, vol. 73, Cambridge University Press, doi:10.1017/CBO9780511665578, ISBN 0-521-46105-7

References

  • Brualdi, Richard A. (2004). Introductory Combinatorics (4th ed.). Pearson Prentice Hall. ISBN 0-13-100119-1.
  • Schechter, Eric (1997). Handbook of Analysis and Its Foundations. Academic Press. ISBN 0-12-622760-8.

Read other articles:

Kerinyu limau Aloysia citrodora TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsKladlamiidsOrdoLamialesFamiliVerbenaceaeTribusLantaneaeGenusAloysiaSpesiesAloysia citrodora Paláu, 1784 lbs Aloysia citrodora, kerinyu limau, adalah spesies tumbuhan berbunga dalam keluarga kerinyu Verbenaceae, yang berasal dari Amerika Selatan. Nama umum lainnya termasuk semak lebah limau . [1] Minyak ini dibawa ke Eropa oleh Spany…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

Gerard Hoet, Nubuat Ahia kepada Yerobeam, 1728. Ahia orang Silo (Ibrani: אחיה השילוני, Aḥiya[1] ('saudara laki-laki Yah'[2]) Hashiloni); Inggris: Ahijah the Shilonitecode: en is deprecated ), adalah seorang nabi keturunan Lewi yang berasal dari kota Silo, yang hidup pada zaman rajaSalomo, seperti yang disebutkan dalam Kitab 1 Raja-raja pada Alkitab Ibrani. Ahia meramalkan bahwa Yerobeam bin Nebat akan menjadi raja (1 Raja–raja 11:29).[3] Warisan Ibrani …

Pour les articles homonymes, voir Fromantin. Jean-Christophe Fromantin Jean-Christophe Fromantin en 2015. Fonctions Vice-président du conseil départemental des Hauts-de-Seinechargé des Infrastructures routières et navigables En fonction depuis le 1er juillet 2021(2 ans, 9 mois et 2 jours) Président Georges Siffredi Prédécesseur Jean-Didier Berger Conseiller départemental des Hauts-de-Seine En fonction depuis le 1er juillet 2021(2 ans, 9 mois et 2 jours) Avec…

العلاقات الدنماركية البليزية الدنمارك بليز   الدنمارك   بليز تعديل مصدري - تعديل   العلاقات الدنماركية البليزية هي العلاقات الثنائية التي تجمع بين الدنمارك وبليز.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ا…

Election in New Jersey Main article: 1996 United States presidential election 1996 United States presidential election in New Jersey ← 1992 November 5, 1996 2000 →   Nominee Bill Clinton Bob Dole Ross Perot Party Democratic Republican Independent Home state Arkansas Kansas Texas Running mate Al Gore Jack Kemp Pat Choate Electoral vote 15 0 0 Popular vote 1,652,329 1,103,078 262,134 Percentage 53.72% 35.86% 8.52% County Results Clinton   40…

Ofra HazaHaza pada 1994LahirBat-Sheva Ofra Haza(1957-11-19)19 November 1957Hatikva, Tel Aviv, IsraelMeninggal23 Februari 2000(2000-02-23) (umur 42)Ramat Gan, IsraelSebab meninggalPneumonia terkait AIDSMakamPemakaman YarkonPekerjaan Penyanyi penulis lagu pemeran Tahun aktif1969–2000Suami/istriDoron Ashkenazi ​(m. 1997)​Karier musikGenre Musik dunia pop elektronika etnis Musik Timur Tengah synthpop Instrumen Vokal piano Label Hed Arzi EastWest Shanachi…

Karakara Utara (Caracara cheriway) di Kosta Rika Karakara Berjambul adalah nama Falconiformes falconid. Karakara Berjambul terdiri dari: Karakara Utara, Caracara cheriway Karakara Selatan, Caracara plancus Karakara Guadalupe, Caracara lutosa Artikel bertopik hewan ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

American baseball player and executive (1936–2022) Baseball player Lee ThomasFirst baseman / Right fielderBorn: (1936-02-05)February 5, 1936Peoria, Illinois, U.S.Died: August 31, 2022(2022-08-31) (aged 86)St. Louis, Missouri, U.S.Batted: LeftThrew: RightMLB debutApril 22, 1961, for the New York YankeesLast MLB appearanceSeptember 27, 1968, for the Houston AstrosMLB statisticsBatting average.255Home runs106Runs batted in428 Teams New York Yankees (1961) Los An…

Fusi orari dell'Europa: Azzurro Western European Time (UTC+0) Blu Western European Time (UTC+0)Western European Summer Time (UTC+1) Rosso Central European Time (UTC+1)Central European Summer Time (UTC+2) Giallo Ora di Kaliningrad (UTC+2). Ocra Eastern European Time (UTC+2)Eastern European Summer Time (UTC+3) Verde Ora di Mosca (UTC+3) I colori più chiari indicano i paesi che non osservano l'ora legale Eastern European Summer Time (EEST) è la denominazione del fuso orario dell'Europa orientale …

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

For other songs, see High school (disambiguation). 2013 single by Nicki Minaj featuring Lil WayneHigh SchoolSingle by Nicki Minaj featuring Lil Waynefrom the album Pink Friday: Roman Reloaded – The Re-Up ReleasedApril 16, 2013 (2013-04-16)Recorded2012Genre Hip hop R&B Length3:38Label Young Money Cash Money Republic Songwriter(s) Onika Maraj Dwayne Carter Matthew Samuels Tyler Williams Producer(s) Boi-1da T-Minus Nicki Minaj singles chronology Tapout (2013) High School (2…

Liga 1 1.Musim2021–2022Tanggal27 Agustus 2021 – 31 Maret 2022JuaraBali UnitedPertandingan perdanaBali United 1–0 Persik(27 Agustus 2021)DegradasiPersipuraPerselaPersirajaPiala AFC 2022Bali UnitedPSM MakassarLiga Champions AFC 2023–24Bali United[cat. 1]Jumlah pertandingan306Jumlah gol735 (2,4 per pertandingan)Pencetak golterbanyakIlija Spasojević(22 gol)Kemenangan kandangterbesarBali United 5-0 Persiraja(30 November 2021)Persikabo 1973 5-0 Persiraja(9 Desember 2021)Kemenanga…

The Royal Dragoon GuardsRegimental badgeActive1 August 1992 – presentAllegiance United KingdomBranch British ArmyTypeLine cavalryRoleArmoured cavalrySizeOne regimentPart ofRoyal Armoured CorpsGarrison/HQRHQ: YorkRegiment: Battlesbury Barracks, WarminsterNickname(s)“The First and Last” and “Irish & Yorks Cavalry”Motto(s)Quis SeparabitWho shall separate usMarchQuick – Fare Thee Well InniskillingSlow – 4th Dragoon Guards (first two themes) + 7th Dragoon Guards (firs…

1964 film by B. R. Panthulu Muradan MuthuTheatrical release posterDirected byB. R. PanthuluScreenplay byM. S. SolaimalaiProduced byB. R. PanthuluStarringSivaji GanesanDevikaCinematographyV. RamamurthiEdited byR. DevarajanMusic byT. G. LingappaProductioncompanyPadmini PicturesRelease date 3 November 1964 (1964-11-03) CountryIndiaLanguageTamil Muradan Muthu (transl. Rogue Muthu) is a 1964 Indian Tamil-language film, directed and produced by B. R. Panthulu. The film stars Sivaj…

Monsters & Co.Mike, Sulley e Boo in una scena del filmTitolo originaleMonsters, Inc. Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2001 Durata92 min Rapporto1,85:1 Genereanimazione, commedia, fantastico, avventura RegiaPete Docter co-regia: Lee Unkrich, David Silverman SoggettoPete Docter, Jill Culton, Jeff Pidgeon, Ralph Eggleston SceneggiaturaAndrew Stanton, Daniel Gerson ProduttoreDarla K. Anderson Produttore esecutivoJohn Lasseter, Andrew Stanton Casa d…

Italian football club For the Spanish club with the same name, see SP Villafranca. Football clubVillafrancaFull nameAssociazione Sportiva Dilettantistica VillafrancaNickname(s)Cappe Falzo Hasa DalFounded1920GroundStadio Comunale,Villafranca di Verona, ItalyChairmanMirko CordioliManagerPaolo CorghiLeagueEccellenza2019–20Serie D/B, 20th (relegated) Home colours Away colours Associazione Sportiva Dilettantistica Villafranca is an Italian association football club, based in Villafranca di Verona, …

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 中…

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Ballabh …

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Kembali kehalaman sebelumnya