Poinsot's ellipsoid

In classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector of the rigid rotor is not constant, but satisfies Euler's equations. The conservation of kinetic energy and angular momentum provide two constraints on the motion of .

Without explicitly solving these equations, the motion can be described geometrically as follows:[1]

  • The rigid body's motion is entirely determined by the motion of its inertia ellipsoid, which is rigidly fixed to the rigid body like a coordinate frame.
  • Its inertia ellipsoid rolls, without slipping, on the invariable plane, with the center of the ellipsoid a constant height above the plane.
  • At all times, is the point of contact between the ellipsoid and the plane.

The motion is periodic, so traces out two closed curves, one on the ellipsoid, another on the plane.

  • The closed curve on the ellipsoid is the polhode.
  • The closed curve on the plane is the herpolhode.

If the rigid body is symmetric (has two equal moments of inertia), the vector describes a cone (and its endpoint a circle). This is the torque-free precession of the rotation axis of the rotor.

Angular kinetic energy constraint

The law of conservation of energy implies that in the absence of energy dissipation or applied torques, the angular kinetic energy is conserved, so .

The angular kinetic energy may be expressed in terms of the moment of inertia tensor and the angular velocity vector

where are the components of the angular velocity vector , and the are the principal moments of inertia when both are in the body frame. Thus, the conservation of kinetic energy imposes a constraint on the three-dimensional angular velocity vector ; in the principal axis frame, it must lie on the ellipsoid defined by the above equation, called the inertia ellipsoid.

The path traced out on this ellipsoid by the angular velocity vector is called the polhode (coined by Poinsot from Greek roots for "pole path") and is generally circular or taco-shaped.

Angular momentum constraint

The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so .

The angular momentum vector can be expressed in terms of the moment of inertia tensor and the angular velocity vector

which leads to the equation

Since the dot product of and is constant, and itself is constant, the angular velocity vector has a constant component in the direction of the angular momentum vector . This imposes a second constraint on the vector ; in absolute space, it must lie on the invariable plane defined by its dot product with the conserved vector . The normal vector to the invariable plane is aligned with . The path traced out by the angular velocity vector on the invariable plane is called the herpolhode (coined from Greek roots for "serpentine pole path").

The herpolhode is generally an open curve, which means that the rotation does not perfectly repeat, but the polhode is a closed curve (see below).[2]

Tangency condition and construction

These two constraints operate in different reference frames; the ellipsoidal constraint holds in the (rotating) principal axis frame, whereas the invariable plane constant operates in absolute space. To relate these constraints, we note that the gradient vector of the kinetic energy with respect to angular velocity vector equals the angular momentum vector

Hence, the normal vector to the kinetic-energy ellipsoid at is proportional to , which is also true of the invariable plane. Since their normal vectors point in the same direction, these two surfaces will intersect tangentially.

Taken together, these results show that, in an absolute reference frame, the instantaneous angular velocity vector is the point of intersection between a fixed invariable plane and a kinetic-energy ellipsoid that is tangent to it and rolls around on it without slipping. This is Poinsot's construction.

Derivation of the polhodes in the body frame

In the principal axis frame (which is rotating in absolute space), the angular momentum vector is not conserved even in the absence of applied torques, but varies as described by Euler's equations. However, in the absence of applied torques, the magnitude of the angular momentum and the kinetic energy are both conserved

where the are the components of the angular momentum vector along the principal axes, and the are the principal moments of inertia.

These conservation laws are equivalent to two constraints to the three-dimensional angular momentum vector . The kinetic energy constrains to lie on an ellipsoid, whereas the angular momentum constraint constrains to lie on a sphere. These two surfaces intersect in two curves shaped like the edge of a taco that define the possible solutions for . This shows that , and the polhode, stay on a closed loop, in the object's moving frame of reference.

The orientation of the body in space thus has two degrees of freedom. Firstly, some point on the "taco edge" has to align with which is a constant vector in absolute space. Secondly, with the vector in the body frame that goes through this point fixed, the body can have any amount of rotation around that vector. So in principle, the body's orientation is some point on a toroidal 2-manifold inside the 3-manifold of all orientations. In general, the object will follow a non-periodic path on this torus, but it may follow a periodic path. The time taken for to complete one cycle around its track in the body frame is constant, but after a cycle the body will have rotated by an amount that may not be a rational number of degrees, in which case the orientation will not be periodic, but almost periodic.

In general a torus is almost determined by three parameters: the ratios of the second and third moments of inertia to the highest of the three moments of inertia, and the ratio relating the angular momentum to the energy times the highest moment of inertia. But for any such a set of parameters there are two tori, because there are two "tacos" (corresponding to two polhodes). A set of 180° rotations carries any orientation of one torus into an orientation of the other with the opposite point aligned with the angular momentum vector. If the angular momentum is exactly aligned with a principal axes, the torus degenerates into a single loop. If exactly two moments of inertia are equal (a so-called symmetric body), then in addition to tori there will be an infinite number of loops, and if all three moments of inertia are equal, there will be loops but no tori. If the three moments of inertia are all different and but the intermediate axis is not aligned with the angular momentum, then the orientation will be some point on a topological open annulus.

Instability of rotation

Because of all this, when the angular velocity vector (or the angular momentum vector) is not close to the axis of highest or lowest inertia, the body "tumbles". Most moons rotate more or less around their axis of greatest inertia (due to viscous effects), but Hyperion (a moon of Saturn), two moons of Pluto and many other small bodies of the Solar System have tumbling rotations.

Dzhanibekov effect demonstration in microgravity, NASA.

If the body is set spinning on its intermediate principal axis, then the intersection of the ellipsoid and the sphere is like two loops that cross at two points, lined up with that axis. If the alignment with the intermediate axis is not perfect then will eventually move off this point along one of the four tracks that depart from this point, and head to the opposite point. This corresponds to moving to its antipode on the Poinsot ellipsoid. See video at right and Tennis racket theorem.

This construction differs from Poinsot's construction because it considers the angular momentum vector rather than the angular velocity vector . It appears to have been developed by Jacques Philippe Marie Binet.[citation needed]

Special case

In the general case of rotation of an unsymmetric body, which has different values of the moment of inertia about the three principal axes, the rotational motion can be quite complex unless the body is rotating around a principal axis. As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes. These cases include rotation of a prolate spheroid (the shape of an American football), or rotation of an oblate spheroid (the shape of a flattened sphere). In this case, the angular velocity describes a cone, and the polhode is a circle. This analysis is applicable, for example, to the axial precession of the rotation of a planet (the case of an oblate spheroid.)

Applications

One of the applications of Poinsot's construction is in visualizing the rotation of a spacecraft in orbit.[3]

See also

References

  1. ^ Goldstein, Herbert; John L. Safko; Charles P. Poole (2011). "5.6 Torque-Free Motion of a Rigid Body". Classical mechanics (Third ed.). ISBN 978-81-317-5891-5. OCLC 960166650.
  2. ^ Jerry Ginsberg. "Gyroscopic Effects," Engineering Dynamics, Volume 10, p. 650, Cambridge University Press, 2007
  3. ^ F. Landis Markley and John L. Crassidis, Chapter 3.3, "Attitude Dynamics," p. 89; Fundamentals of Spacecraft Attitude Determination and Control, Springer Technology and Engineering Series, 2014.

Sources

  • Poinsot (1834) Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris.
  • Landau LD and Lifshitz EM (1976) Mechanics, 3rd. ed., Pergamon Press. ISBN 0-08-021022-8 (hardcover) and ISBN 0-08-029141-4 (softcover).
  • Goldstein H. (1980) Classical Mechanics, 2nd. ed., Addison-Wesley. ISBN 0-201-02918-9
  • Symon KR. (1971) Mechanics, 3rd. ed., Addison-Wesley. ISBN 0-201-07392-7

Read other articles:

Batalyon Artileri Medan 10/BrajamustiLambang Yon Armed 10/Roket/BradjamustiDibentuk14 Juli 1962NegaraIndonesiaCabangArmedTipe unitSatuan Bantuan TempurPeranPasukan Artileri TNI Angkatan DaratBagian dariResimen Armed 1/Sthira YudhaMarkasBogor, Jawa BaratJulukanYonarmed 10/Roket/ BradjamustiMotoBrajamustiBaretHijau KostradMaskotSenjata BradjamustiUlang tahun14 JuliAlutsistaMLRS (Artillery Saturation Rocket System) ASTROS II MK-6 Batalyon Artileri Medan 10/Bradjamusti atau Yon Armed 10/Roket adalah…

Stasiun Omotesandō表参道駅Pintu masuk, Mei 2010LokasiPrefekturTokyo(Lihat stasiun lainnya di Tokyo)Distrik kotaMinatoAlamat3-6-12 Kita-aoyamaAlamat dalam bahasa Jepang東京都港区北青山3-6-12SejarahDibuka1938Nama sebelumnyaAoyama-rokuchōme StationNama sekarang digunakan sejak1978Layanan kereta apiNomor stasiun C-04 G-02 Z-02 OperatorTokyo MetroJalurJalur Tokyo Metro ChiyodaJalur Tokyo Metro GinzaJalur Tokyo Metro HanzomonStatistik151,667 penumpang/hari (FY2007)[1] Stasiun Omo…

David John ChalmersLahir20 April 1966 (umur 57)Sydney, AustraliaEraFilsafat kontinentalKawasanFilsafat BaratAliranFilsafat analitikMinat utamaFilsafat budiKesadaranFilsafat bahasaGagasan pentingDualisme properti; monisme ganjil; budi di luar batas; semantik dua dimensi Dipengaruhi Douglas HofstadterDaniel DennettRené Descartes Memengaruhi Gualtiero Piccinini David John Chalmers (/ˈtʃælmərz/;[1] lahir 20 April 1966) adalah seorang filsuf dan ilmuwan kognitif Australia …

Santo Aristobulus dari BritanniaIkon Santo Aristibulus yang Tua, Rasul, Martir, dan Uskup Britania PertamaUskup Britania PertamaLahirSiprusMeninggalAbad ke-1WalesDihormati diKristenPesta15 Maret (Katolik Roma)16 Maret (Ortodoks Timur)19 Paremhat (Gereja Koptik)[1] Aristobulus dari Britannia adalah seorang santo Kristen yang disebut oleh Hippolytus dari Roma (170-235) dan Dorotheus dari Gaza (505-565) sebagai salah satu dari tujuh puluh murid yang disebutkan dalam Lukas 10:1–24 dan usku…

Chemical compound ApronalClinical dataRoutes ofadministrationOralATC codeN05CM12 (WHO) Pharmacokinetic dataExcretionRenalIdentifiers IUPAC name (±)-N-Carbamoyl-2-propan-2-ylpent-4-enamide CAS Number528-92-7 YPubChem CID10715ChemSpider10264 YUNIIV18J24E25EKEGGD03975 YChEMBLChEMBL509282 YCompTox Dashboard (EPA)DTXSID00862125 ECHA InfoCard100.007.677 Chemical and physical dataFormulaC9H16N2O2Molar mass184.239 g·mol−13D model (JSmol)Interactive imageChiralityRa…

Keuskupan AversaDioecesis AversanaKatolik Katedral AversaLokasiNegara ItaliaProvinsi gerejawiNapoliStatistikLuas361 km2 (139 sq mi)Populasi- Total- Katolik(per 2015)567.566543,260 (95.7%)Paroki94Imam184 (diosesan)29 (Ordo Relijius)InformasiDenominasiGereja KatolikRitusRitus RomaPendirian1053; 970 tahun lalu (1053)KatedralCattedrale di S. Paolo ApostoloKepemimpinan kiniPausFransiskusUskupAngelo SpinilloEmeritusMario MilanoSitus webwww.diocesiaversa.it …

BakoolWilayahLokasi di Somalia.Koordinat: 4°20′47″N 43°32′59″E / 4.34639°N 43.54972°E / 4.34639; 43.54972Koordinat: 4°20′47″N 43°32′59″E / 4.34639°N 43.54972°E / 4.34639; 43.54972Negara SomaliaIbu kotaXuddurZona waktuUTC+3 (EAT)Kode area teleponBakoolHDI (2017)0.287[1]rendah Bakool adalah sebuah daerah (gobolka) di Somalia bagian tengah. Ibu kotanya ialah Xuddur. Bakool berbatasan dengan Ethiopia dan daerah Soma…

Arca-arca Galia-Romawi yang ditemukan di Ingelheim am Rhein Galia-Romawi adalah sebuah istilah yang mengacu kepada budaya Galia yang telah mengalami Romanisasi pada masa kekuasaan Kekaisaran Romawi. Proses ini memiliki ciri berupa pengambilan atau pengadaptasian moral-moral dan gaya hidup Romawi ke dalam kehidupan Galia.[1] Interpretatio romana memberikan nama-nama Romawi untuk dewa-dewi Galia, seperti misalnya dewa penempa logam Gobannus,[2] tetapi dari antara dewa-dewi Keltik h…

Quarter of Hamburg in GermanyEißendorf Quarter of Hamburg Göhlbachtal in EißendorfLocation of Eißendorf in Hamburg Eißendorf Show map of GermanyEißendorf Show map of HamburgCoordinates: 53°27′21″N 9°57′16″E / 53.45583°N 9.95458°E / 53.45583; 9.95458CountryGermanyStateHamburgCityHamburg BoroughHamburg-Harburg Area • Total8.4 km2 (3.2 sq mi)Population (2020-12-31)[1] • Total24,863 • Density3,0…

العلاقات الإكوادورية الكوستاريكية الإكوادور كوستاريكا   الإكوادور   كوستاريكا تعديل مصدري - تعديل   العلاقات الإكوادورية الكوستاريكية هي العلاقات الثنائية التي تجمع بين الإكوادور وكوستاريكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة وم…

Gymnospermae Periode Karbon – Sekarang PreЄ Є O S D C P T J K Pg N Gymnospermae Araucaria araucana (en) TaksonomiSuperdomainBiotaSuperkerajaanEukaryotaKerajaanPlantaeDivisiEmbryophyta siphonogamaDivisiGymnospermae Prantl, 1874 DivisioPinophyta - Tetumbuhan runjung Ginkgophyta - ginkgo Cycadophyta - Pakis haji dan kerabatnya Gnetophyta - Melinjo dan kerabatnyalbs Gymnospermae (dari bahasa Yunani: gymnos (telanjang) dan sperma (biji) atau tumbuhan berbiji terbuka merupakan kelompok tumbuhan be…

العلاقات الإسواتينية الإيطالية إسواتيني إيطاليا   إسواتيني   إيطاليا تعديل مصدري - تعديل   العلاقات الإسواتينية الإيطالية هي العلاقات الثنائية التي تجمع بين إسواتيني وإيطاليا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: …

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري البولندي الممتاز Ekstraklasa الموسم 2015–2016 البلد بولندا  المنظم اتحاد بولندا لكرة القدم  النسخة 82 ع…

2008 Russian crewed spaceflight to the ISS Soyuz TMA-12OperatorRoskosmosCOSPAR ID2008-015A SATCAT no.32756Mission duration198d 16h 21m Spacecraft propertiesSpacecraft typeSoyuz-TMAManufacturerRKK Energia CrewCrew size3MembersSergey VolkovOleg KononenkoLaunchingYi So-YeonLandingRichard Garriott Start of missionLaunch dateApril 8, 2008, 11:16:39 (2008-04-08UTC11:16:39Z) UTCRocketSoyuz-FGLaunch siteBaikonur 1/5 End of missionLanding dateOctober 24, 2008, 03:37 (2008-10-24UTC03:38Z)&#…

Campionato europeo di calcio femminile 20222022 UEFA European Women's Football Championship Competizione Campionato europeo di calcio femminile Sport Calcio Edizione 13ª Organizzatore UEFA Date dal 6 luglio 2022al 31 luglio 2022 Luogo  Inghilterra Partecipanti 16 (48 alle qualificazioni) Risultati Vincitore Inghilterra(1º titolo) Finalista Germania Semi-finalisti Svezia Francia Statistiche Miglior giocatore Bethany Mead[1] Miglior marcatore Bethany Mead Alexandra…

Pour les articles homonymes, voir Blade. Blade 2 Données clés Titre original Blade II Réalisation Guillermo del Toro Scénario David S. Goyer Musique Marco Beltrami Acteurs principaux Wesley Snipes Kris Kristofferson Ron Perlman Thomas Kretschmann Leonor Varela Sociétés de production Amen Ra Films Marvel Enterprises Justin Pictures Imaginary Forces Milk & Honey Pictures Pacific Title and Art Studio New Line Cinema Linovo Productions GmbH Pays de production États-Unis Allemagne Genre Fa…

Group E of the 2019 AFC Asian Cup took place from 8 to 17 January 2019.[1] The group consisted of Saudi Arabia, Qatar, Lebanon and North Korea.[2] The top two teams, Qatar and Saudi Arabia, advanced to the round of 16.[3] However, third-placed Lebanon missed out qualification to the knockout stage by fair play points to Vietnam. Saudi Arabia were the only former champions in the group, having won three Asian Cup titles in 1984, 1988 and 1996. Teams Draw position Team Zone…

This is a list of traditional windmills in the American state of Massachusetts. Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) Check out the locations in linked map all coordinates using OpenSourcMap: Mills Known building dates are in bold text. Non-bold text denotes first known date. Iron windpumps are outside the scope of this list unless listed on the National Register of Historic Places. Locatio…

A romantic fantasy South Korean television series Familiar WifePromotional posterAlso known asWife That I KnowWife I KnowHangul아는 와이프Literal meaningKnowing WifeRevised RomanizationAneun Waipeu GenreRomanceFantasyDramaComedyCreated byStudio Dragon[1]Written byYang Hee-sungDirected byLee Sang-yeobStarringJi SungHan Ji-minJang Seung-joKang Han-naCountry of originSouth KoreaOriginal languageKoreanNo. of episodes16ProductionExecutive producersCho Hyung-jinKim Sang-heonCamera setupSi…

† Палеопропитеки Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:Мл…

Kembali kehalaman sebelumnya