Powerful number

144000 is a powerful number.
Every exponent in its prime factorization is larger than 1.
It is the product of a square and a cube.

A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.

The following is a list of all powerful numbers between 1 and 1000:

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, ... (sequence A001694 in the OEIS).
Powerful numbers up to 100 with prime factors colour-coded – 1 is a special case

Equivalence of the two definitions

If m = a2b3, then every prime in the prime factorization of a appears in the prime factorization of m with an exponent of at least two, and every prime in the prime factorization of b appears in the prime factorization of m with an exponent of at least three; therefore, m is powerful.

In the other direction, suppose that m is powerful, with prime factorization

where each αi ≥ 2. Define γi to be three if αi is odd, and zero otherwise, and define βi = αiγi. Then, all values βi are nonnegative even integers, and all values γi are either zero or three, so

supplies the desired representation of m as a product of a square and a cube.

Informally, given the prime factorization of m, take b to be the product of the prime factors of m that have an odd exponent (if there are none, then take b to be 1). Because m is powerful, each prime factor with an odd exponent has an exponent that is at least 3, so m/b3 is an integer. In addition, each prime factor of m/b3 has an even exponent, so m/b3 is a perfect square, so call this a2; then m = a2b3. For example:

The representation m = a2b3 calculated in this way has the property that b is squarefree, and is uniquely defined by this property.

Mathematical properties

The sum of the reciprocals of the powerful numbers converges. The value of this sum may be written in several other ways, including as the infinite product

where p runs over all primes, ζ(s) denotes the Riemann zeta function, and ζ(3) is Apéry's constant.[1] (sequence A082695 in the OEIS) More generally, the sum of the reciprocals of the sth powers of the powerful numbers (a Dirichlet series generating function) is equal to

whenever it converges.

Let k(x) denote the number of powerful numbers in the interval [1,x]. Then k(x) is proportional to the square root of x. More precisely,

(Golomb, 1970).

The two smallest consecutive powerful numbers are 8 and 9. Since Pell's equation x2 − 8y2 = 1 has infinitely many integral solutions, there are infinitely many pairs of consecutive powerful numbers (Golomb, 1970); more generally, one can find consecutive powerful numbers by solving a similar Pell equation x2ny2 = ±1 for any perfect cube n. However, one of the two powerful numbers in a pair formed in this way must be a square. According to Guy, Erdős has asked whether there are infinitely many pairs of consecutive powerful numbers such as (233, 2332132) in which neither number in the pair is a square. Walker (1976) showed that there are indeed infinitely many such pairs by showing that 33c2 + 1 = 73d2 has infinitely many solutions. Walker's solutions to this equation are generated, for any odd integer k, by considering the number

for integers a divisible by 7 and b divisible by 3, and constructing from a and b the consecutive powerful numbers 7a2 and 3b2 with 7a2 = 1 + 3b2. The smallest consecutive pair in this family is generated for k = 1, a = 2637362, and b = 4028637 as

and

Unsolved problem in mathematics:
Can three consecutive numbers be powerful?

It is a conjecture of Erdős, Mollin, and Walsh that there are no three consecutive powerful numbers. If a triplet of consecutive powerful numbers exists, then its smallest term must be congruent to 7, 27, or 35 modulo 36.[2]

If the abc conjecture is true, there are only a finite number of sets of three consecutive powerful numbers.

Sums and differences of powerful numbers

Any odd number is a difference of two consecutive squares: (k + 1)2 = k2 + 2k + 1, so (k + 1)2 − k2 = 2k + 1. Similarly, any multiple of four is a difference of the squares of two numbers that differ by two: (k + 2)2 − k2 = 4k + 4. However, a singly even number, that is, a number divisible by two but not by four, cannot be expressed as a difference of squares. This motivates the question of determining which singly even numbers can be expressed as differences of powerful numbers. Golomb exhibited some representations of this type:

2 = 33 − 52
10 = 133 − 37
18 = 192 − 73 = 35 − 152.

It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as

6 = 5473 − 4632,

and McDaniel showed that every integer has infinitely many such representations (McDaniel, 1982).

Erdős conjectured that every sufficiently large integer is a sum of at most three powerful numbers; this was proved by Roger Heath-Brown (1987).

Generalization

More generally, we can consider the integers all of whose prime factors have exponents at least k. Such an integer is called a k-powerful number, k-ful number, or k-full number.

(2k+1 − 1)k,  2k(2k+1 − 1)k,   (2k+1 − 1)k+1

are k-powerful numbers in an arithmetic progression. Moreover, if a1, a2, ..., as are k-powerful in an arithmetic progression with common difference d, then

a1(as + d)k,  

a2(as + d)k, ..., as(as + d)k, (as + d)k+1

are s + 1 k-powerful numbers in an arithmetic progression.

We have an identity involving k-powerful numbers:

ak(a + ... + 1)k + ak + 1(a + ... + 1)k + ... + ak + (a + ... + 1)k = ak(a + ... +1)k+1.

This gives infinitely many l+1-tuples of k-powerful numbers whose sum is also k-powerful. Nitaj shows there are infinitely many solutions of x + y = z in relatively prime 3-powerful numbers(Nitaj, 1995). Cohn constructs an infinite family of solutions of x + y = z in relatively prime non-cube 3-powerful numbers as follows: the triplet

X = 9712247684771506604963490444281, Y = 32295800804958334401937923416351, Z = 27474621855216870941749052236511

is a solution of the equation 32X3 + 49Y3 = 81Z3. We can construct another solution by setting X = X(49Y3 + 81Z3), Y = −Y(32X3 + 81Z3), Z = Z(32X3 − 49Y3) and omitting the common divisor.

See also

Notes

  1. ^ (Golomb, 1970)
  2. ^ Beckon, Edward (2019). "On Consecutive Triples of Powerful Numbers". Rose-Hulman Undergraduate Mathematics Journal. 20 (2): 25–27.

References

Read other articles:

Urban CopsPoster promosi Urban Cops Musim 2Nama alternatifCity PoliceHangul도시경찰 GenreAcara realitasPemeranJang HyukJo Jae-yoonKim Min-jaeLee Tae-hwanNegara asalKorea SelatanBahasa asliKoreaJmlh. musim2Jmlh. episode Musim 1: 10 Musim 2: 10 ProduksiLokasi produksiKorea SelatanDurasi90 menitRilis asliJaringanMBC Every 1Format gambarHDTV 1080iFormat audio2-channel StereoDolby DigitalRilis Musim 1: 14 Januari – 18 Maret 2019 (2019-03-18) Musim 2: 29 Juli –&#x…

Questa voce sull'argomento componenti dei velivoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Dettaglio della coda di un MiG-23. Si possono osservare ben quattro aerofreni in posizione semiestratta. Le paratie vengono azionate da un martinetto idraulico. In aeronautica, gli aerofreni, superfici di controllo automatico secondarie, sono paratie mobili che vengono estratte dalla carenatura o dal dorso alare con lo scopo di ridurre o non far aumentare la…

Edna MurphyMurphy, c. 1920Lahir(1899-11-17)17 November 1899New York, New York, A.S.Meninggal3 Agustus 1974(1974-08-03) (umur 74)Santa Monica, California, A.S.PekerjaanAktrisTahun aktif1918-1933 Edna Murphy (17 November 1899 – 3 Agustus 1974) adalah seorang aktris Amerika yang berkarir sejak era film bisu.[1] Dia muncul di 80 film antara 1918 dan 1933. Murphy terpilih sebagai Bintang Film Paling banyak difoto tahun 1925 oleh Majalah ScreenLand. Referensi ^ Edna M…

2011 American filmThe InnkeepersTheatrical release posterDirected byTi WestWritten byTi WestProduced by Derek Curl Larry Fessenden Peter Phok Ti West Starring Sara Paxton Pat Healy Kelly McGillis CinematographyEliot RockettEdited byTi WestMusic byJeff GraceProductioncompanies Dark Sky Films Glass Eye Pix Distributed byMagnet ReleasingRelease dates March 12, 2011 (2011-03-12) (SXSW) February 3, 2012 (2012-02-03) (United States) Running time101 minutes[1&#…

  جزر ماريانا الشمالية (بالتسمورية: Sankattan Siha Na Islas Mariånas)‏[1][2]  علم جزر ماريانا الشمالية  الشعار الشعار الوطني النشيد: الأرض والسكان إحداثيات 16°42′18″N 145°46′48″E / 16.705°N 145.78°E / 16.705; 145.78  [3] أخفض نقطة المحيط الهادئ (0 متر)[4]  المساحة 464.0 كيلوم…

Kepiting kacang Pinnotheres pisum Pinnotheres pisum ♂TaksonomiKerajaanAnimaliaFilumArthropodaKelasMalacostracaOrdoDecapodaFamiliPinnotheridaeGenusPinnotheresSpesiesPinnotheres pisum Tata namaSinonim taksonPinnotheres cranchii Leach, 1815 Pinnotheres latreilli Leach, 1815 Pinnotheres modiolae Costa, 1840 Pinnotheres modioli Leach, 1814 Pinnotheres mytilii Leach, 1814 Pinnotheres mytilorum Leach, 1814 Pinnotheres varians Leach, 1815lbs Kepiting kacang (Pinnotheres pisum) adalah kepiting berukura…

First-century BC Roman history by Livy This article is about a work sometimes referred to as Ab Urbe Condita. For the dating convention used for Roman history, see Ab Urbe Condita. Stories from Livy I.4, on an altar panel from Ostia. Father Tiber looks on at the lower right while the national lupa (wolf) nourishes Romulus and Remus, founders of Rome. The herders are about to find them. One of their goats can be seen. Small animals denote the wildness of the place. The national aquila (eagle) is …

Election in New Mexico See also: 2020 United States Senate elections Not to be confused with 2020 New Mexico State Senate election. 2020 United States Senate election in New Mexico ← 2014 November 3, 2020 2026 →   Nominee Ben Ray Luján Mark Ronchetti Party Democratic Republican Popular vote 474,483 418,483 Percentage 51.73% 45.62% County results Congressional district results Precinct resultsLuján:      40–50%     &…

Revolusi AnyelirBagian dari transisi Portugal menuju demokrasi dan Perang Dingin25 April selamanya! 1978Tanggal25 April 1974; 49 tahun lalu (1974-04-25)LokasiPortugalSebab Represi kebebasan sipil, kebebasan politik, dan kebebasan berpendapat Berkembangnya antiimperialisme, meningkatnya anggaran militer, dan isolasi internasional MetodeKudeta, revolusi damaiHasil Imperium Portugal bubar Dimulainya transisi Portugal menuju demokrasi Perang Kolonial Portugis berakhir dan kemerdekaan bagi Angol…

Metro Toronto Convention CentreMetro Toronto Convention Centre, South BuildingAddress255 Front Street WestToronto, OntarioM5V 2W6Coordinates43°38′39″N 79°23′12″W / 43.64417°N 79.38667°W / 43.64417; -79.38667OwnerOxford PropertiesBuilt1980sOpenedOctober 1984Renovated2018Expanded1997Theatre seating1232 seatsEnclosed space • Total spaceover 700,000 sq ft (65,000 m2) • Exhibit hall floorover 442,000 sq…

Untuk pelawak tunggal dengan nama marga yang sama, lihat Arif Alfiansyah. Alfiansyah KomengFoto Komeng saat mencalonkan diri sebagai anggota DPD RI 2024[1]LahirAlfiansyah25 Agustus 1970 (umur 53)Jakarta, IndonesiaKebangsaanIndonesiaNama lainKomengAlfiansyah BustamiAlfiansyah Bustami KomengAlmamaterSekolah Tinggi Ilmu Ekonomi TribuanaPekerjaanPemeranpelawakpengisi suarapenyiar radiopresenterpolitikusTahun aktif1991—sekarangSuami/istriAprilliana Indra Dewi ​ R…

Ikatan Pendukung Kemerdekaan Indonesia SingkatanIPKIDibentuk20 Mei 1954 (orisinal)12 September 1998 (revival)Dibubarkan11 Januari 1973 (orisinal)1999 (revival)IdeologiPancasilaHimneGaruda PancasilaPolitik IndonesiaPartai politikPemilihan umum Ikatan Pendukung Kemerdekaan Indonesia atau lebih dikenal dengan nama IP-KI adalah salah satu organisasi masyarakat di Indonesia. Ikatan Pendukung Kemerdekaan Indonesia (IP-KI) merupakan kelanjutan IPKI yang dibentuk sejak 20 Mei 1954. Para tokoh pemrakarsa…

American television program distributor This article is about the media company. For the charitable organization that is not affiliated with the media company, see World Vision International. ABC Films redirects here. Not to be confused with ABC Entertainment. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Worldvision Enterprises – n…

Radio station in Sudbury, Ontario CICS-FMSudbury, OntarioBroadcast areaGreater SudburyFrequency91.7 MHz (FM)BrandingPure Country 91.7ProgrammingFormatCountryAffiliationsPremiere NetworksOwnershipOwnerBell Media(Bell Media Radio)Sister stationsCICI-TVHistoryFirst air dateAugust 18, 2008Call sign meaningPlay on the word Kicks (former branding)Technical informationClassBERP50,000 wattsHAAT120.9 meters (397 ft)LinksWebcastListen LiveWebsiteiheartradio.ca/purecountry/sudbury CICS-FM is a Canadia…

Christophe Dugarry Dugarry nel 2007 Nazionalità  Francia Altezza 188 cm Peso 81 kg Calcio Ruolo Attaccante Termine carriera 19 gennaio 2005 - giocatore Carriera Squadre di club1 1988-1996 Bordeaux187 (34)1996-1997 Milan21 (5)1997-1998 Barcellona7 (0)1998-1999 Olympique Marsiglia52 (8)1999-2003 Bordeaux65 (9)2003-2004 Birmingham City30 (6)2004-2005 Qatar SC40 (1) Nazionale 1995 Francia B1 (0)1994-2002 Francia55 (8) Palmarès  Mondiali di calcio Or…

Untuk Gereja Tiberias di Indonesia, lihat Gereja Tiberias Indonesia. Tiberias טְבֶרְיָהⓘطبريةTranskripsi bahasa Ibrani • Juga dieja sebagaiTverya (official)TiberiasLocation within Israel's North DistrictKoordinat: 32°47′40″N 35°32′00″E / 32.79444°N 35.53333°E / 32.79444; 35.53333Koordinat: 32°47′40″N 35°32′00″E / 32.79444°N 35.53333°E / 32.79444; 35.53333Didirikanc. 20 CEPemerintahan •…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Category 3 Australian region cyclone in 2006 Severe Tropical Cyclone Clare Satellite image of Cyclone ClareMeteorological historyFormed6 January 2006Dissipated10 January 2006Category 3 severe tropical cyclone10-minute sustained (Aus)Highest winds140 km/h (85 mph)Lowest pressure960 hPa (mbar); 28.35 inHgTropical storm1-minute sustained (SSHWS)Highest winds110 km/h (70 mph)Overall effectsFatalitiesNone reportedDamage$2.3 million (2006 USD)Areas affected…

SqualiformesRentang fosil: Late Jurassic–Recent[1] PreЄ Є O S D C P T J K Pg N Squalus cubensis Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Chondrichthyes Subkelas: Elasmobranchii Infrakelas: Euselachii Superordo: Selachimorpha Ordo: SqualiformesGoodrich, 1909 Spesies tipe Squalus acanthiasLinnaeus, 1758 Famili Centrophoridae Dalatiidae Echinorhinidae Etmopteridae Oxynotidae Somniosidae Squalidae Squaliformes /ˌskwɒlɪˈfɔːrmiːz/ adalah ordo hiu yang mencakup se…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Agemochi – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) AgemochiShichimi flavoured agemochiTypeSnackPlace of originJapanMain ingredientsMochi Agemochi (揚げ餅) is a popular Japanese snack food made from…

Kembali kehalaman sebelumnya