Cayley–Dickson construction

In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics.

The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise multiplication) and an involution known as conjugation. The product of an element and its conjugate (or sometimes the square root of this product) is called the norm.

The symmetries of the real field disappear as the Cayley–Dickson construction is repeatedly applied: first losing order, then commutativity of multiplication, associativity of multiplication, and finally alternativity.

More generally, the Cayley–Dickson construction takes any algebra with involution to another algebra with involution of twice the dimension.[1]: 45 

Hurwitz's theorem (composition algebras) states that the reals, complex numbers, quaternions, and octonions are the only (normed) division algebras (over the real numbers).

Synopsis

Cayley–Dickson algebras properties
Algebra Dimension Ordered Multiplication properties Nontriv.
zero
divisors
Commutative Associative Alternative Power-assoc.
Real numbers 1 Yes Yes Yes Yes Yes No
Complex num. 2 No Yes Yes Yes Yes No
Quaternions 4 No No Yes Yes Yes No
Octonions 8 No No No Yes Yes No
Sedenions 16 No No No No Yes Yes
≥ 32

The Cayley–Dickson construction is due to Leonard Dickson in 1919 showing how the octonions can be constructed as a two-dimensional algebra over quaternions. In fact, starting with a field F, the construction yields a sequence of F-algebras of dimension 2n. For n = 2 it is an associative algebra called a quaternion algebra, and for n = 3 it is an alternative algebra called an octonion algebra. These instances n = 1, 2 and 3 produce composition algebras as shown below.

The case n = 1 starts with elements (a, b) in F × F and defines the conjugate (a, b)* to be (a*, –b) where a* = a in case n = 1, and subsequently determined by the formula. The essence of the F-algebra lies in the definition of the product of two elements (a, b) and (c, d):

Proposition 1: For and the conjugate of the product is

proof:

Proposition 2: If the F-algebra is associative and ,then

proof: + terms that cancel by the associative property.

Stages in construction of real algebras

Details of the construction of the classical real algebras are as follows:

Complex numbers as ordered pairs

The complex numbers can be written as ordered pairs (a, b) of real numbers a and b, with the addition operator being component-wise and with multiplication defined by

A complex number whose second component is zero is associated with a real number: the complex number (a, 0) is associated with the real number a.

The complex conjugate (a, b)* of (a, b) is given by

since a is a real number and is its own conjugate.

The conjugate has the property that

which is a non-negative real number. In this way, conjugation defines a norm, making the complex numbers a normed vector space over the real numbers: the norm of a complex number z is

Furthermore, for any non-zero complex number z, conjugation gives a multiplicative inverse,

As a complex number consists of two independent real numbers, they form a two-dimensional vector space over the real numbers.

Besides being of higher dimension, the complex numbers can be said to lack one algebraic property of the real numbers: a real number is its own conjugate.

Quaternions

Cayley Q8 graph of quaternion multiplication showing cycles of multiplication of i (red), j (green) and k (blue). In the SVG file, hover over or click a path to highlight it.

The next step in the construction is to generalize the multiplication and conjugation operations.

Form ordered pairs (a, b) of complex numbers a and b, with multiplication defined by

Slight variations on this formula are possible; the resulting constructions will yield structures identical up to the signs of bases.

The order of the factors seems odd now, but will be important in the next step.

Define the conjugate (a, b)* of (a, b) by

These operators are direct extensions of their complex analogs: if a and b are taken from the real subset of complex numbers, the appearance of the conjugate in the formulas has no effect, so the operators are the same as those for the complex numbers.

The product of a nonzero element with its conjugate is a non-negative real number:

As before, the conjugate thus yields a norm and an inverse for any such ordered pair. So in the sense we explained above, these pairs constitute an algebra something like the real numbers. They are the quaternions, named by Hamilton in 1843.

As a quaternion consists of two independent complex numbers, they form a four-dimensional vector space over the real numbers.

The multiplication of quaternions is not quite like the multiplication of real numbers, though; it is not commutative – that is, if p and q are quaternions, it is not always true that pq = qp.

Octonions

All the steps to create further algebras are the same from octonions on.

This time, form ordered pairs (p, q) of quaternions p and q, with multiplication and conjugation defined exactly as for the quaternions:

Note, however, that because the quaternions are not commutative, the order of the factors in the multiplication formula becomes important—if the last factor in the multiplication formula were r*q rather than qr*, the formula for multiplication of an element by its conjugate would not yield a real number.

For exactly the same reasons as before, the conjugation operator yields a norm and a multiplicative inverse of any nonzero element.

This algebra was discovered by John T. Graves in 1843, and is called the octonions or the "Cayley numbers".

As an octonion consists of two independent quaternions, they form an eight-dimensional vector space over the real numbers.

The multiplication of octonions is even stranger than that of quaternions; besides being non-commutative, it is not associative – that is, if p, q, and r are octonions, it is not always true that (pq)r = p(qr).

For the reason of this non-associativity, octonions have no matrix representation.

Further algebras

The algebra immediately following the octonions is called the sedenions. It retains an algebraic property called power associativity, meaning that if s is a sedenion, snsm = sn + m, but loses the property of being an alternative algebra and hence cannot be a composition algebra.

The Cayley–Dickson construction can be carried on ad infinitum, at each step producing a power-associative algebra whose dimension is double that of the algebra of the preceding step. All the algebras generated in this way over a field are quadratic: that is, each element satisfies a quadratic equation with coefficients from the field.[1]: 50 

In 1954 R. D. Schafer examined the algebras generated by the Cayley–Dickson process over a field F and showed they satisfy the flexible identity. He also proved that any derivation algebra of a Cayley–Dickson algebra is isomorphic to the derivation algebra of Cayley numbers, a 14-dimensional Lie algebra over F.[2]

Modified Cayley–Dickson construction

The Cayley–Dickson construction, starting from the real numbers , generates the composition algebras (the complex numbers), (the quaternions), and (the octonions). There are also composition algebras whose norm is an isotropic quadratic form, which are obtained through a slight modification, by replacing the minus sign in the definition of the product of ordered pairs with a plus sign, as follows:

When this modified construction is applied to , one obtains the split-complex numbers, which are ring-isomorphic to the direct product following that, one obtains the split-quaternions, an associative algebra isomorphic to that of the 2 × 2 real matrices; and the split-octonions, which are isomorphic to Zorn(R). Applying the original Cayley–Dickson construction to the split-complexes also results in the split-quaternions and then the split-octonions.[3]

General Cayley–Dickson construction

Albert (1942, p. 171) gave a slight generalization, defining the product and involution on B = AA for A an algebra with involution (with (xy)* = y*x*) to be

for γ an additive map that commutes with * and left and right multiplication by any element. (Over the reals all choices of γ are equivalent to −1, 0 or 1.) In this construction, A is an algebra with involution, meaning:

  • A is an abelian group under +
  • A has a product that is left and right distributive over +
  • A has an involution *, with (x*)* = x, (x + y)* = x* + y*, (xy)* = y*x*.

The algebra B = AA produced by the Cayley–Dickson construction is also an algebra with involution.

B inherits properties from A unchanged as follows.

  • If A has an identity 1A, then B has an identity (1A, 0).
  • If A has the property that x + x*, xx* associate and commute with all elements, then so does B. This property implies that any element generates a commutative associative *-algebra, so in particular the algebra is power associative.

Other properties of A only induce weaker properties of B:

  • If A is commutative and has trivial involution, then B is commutative.
  • If A is commutative and associative then B is associative.
  • If A is associative and x + x*, xx* associate and commute with everything, then B is an alternative algebra.

Notes

  1. ^ a b Schafer, Richard D. (1995) [1966], An introduction to non-associative algebras, Dover Publications, ISBN 0-486-68813-5, Zbl 0145.25601
  2. ^ Richard D. Schafer (1954) "On the algebras formed by the Cayley–Dickson process", American Journal of Mathematics 76: 435–46 doi:10.2307/2372583
  3. ^ Kevin McCrimmon (2004) A Taste of Jordan Algebras, pp 64, Universitext, Springer ISBN 0-387-95447-3 MR2014924

References

Further reading

Read other articles:

Pusat Akuatik TokyoPusat Akuatik Tokyo pada Januari 2020AlamatTokyo, JepangKapasitas15,000 (10,000 setelah Olimpiade)KonstruksiDidirikan2017; 7 tahun lalu (2017)Dibuka24 Oktober 2020; 3 tahun lalu (2020-10-24) Pusat Akuatik Tokyo (東京アクアティクスセンター Tōkyō akuatikusu sentā) adalah kolam renang dalam ruangan di Mori-Beach Park (辰巳の森海浜公園) di Tatsumi di bangsal Kōtō di Tokyo timur. Konstruksi dimulai pada April 2017 dan selesai pada 2020. Total bia…

ADAC Formula 4KategoriFIA Formula 4DaerahEuropeMusim pertama2015KonstruktorTatuusPemasok mesinAbarthPemasok banPirelliJuara pembalap Andrea Kimi AntonelliJuara tim Prema RacingSitus webOfficial website Musim saat ini Kejuaraan ADAC Formula 4 atau Formula 4 Jerman merupakan sebuah ajang balap mobil roda terbuka kelas Formula 4 yang diselenggarakan di Jerman. Ajang balap ini ditujukan untuk para pembalap muda lulusan balap gokart yang ingin naik kelas dan menapaki ajang balap profesional dengan ha…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Bhoot ChaturdashiSutradaraShabbir MallickProduserSVF EntertainmentSkenarioAritra Sengupta, Anwoy Mukherjee, Arindra Rai ChaudhuriCeritaMainak BhaumikPemeranAryann BhowmikEna SahaSohini SarkarDeepsheta MitraPenata musikNabarun BoseSinematograferManoj K…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bidang orbit astronomi – berita · surat kabar · buku · cendekiawan · JSTOR Bidang orbit sebuah benda langit yang mengorbit benda langit lainnya adalah bidang geometris tempat orbit tersebut berlokasi. …

Kancilan bakau Status konservasi Risiko Rendah (IUCN 3.1) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passeriformes Famili: Pachycephalidae Genus: Pachycephala Spesies: P. cinerea Nama binomial Pachycephala cinerea(Blyth, 1847) Sinonim Pachycephala grisola Kancilan bakau (Latin: Pachycephala grisolacode: la is deprecated ) adalah spesies burung dari keluarga Pachycephalidae, dari genus Pachycephala. Burung ini merupakan jenis burung pemakan serangg dan memil…

أستراليا المفتوحة 1983 رقم الفعالية 72  البلد أستراليا  التاريخ 1983  الرياضة كرة المضرب  الفعاليات أستراليا المفتوحة 1983 - فردي السيدات،  وأستراليا المفتوحة 1983 - فردي الرجال،  وأستراليا المفتوحة 1983 – زوجي سيدات  [لغات أخرى]‏،  وأستراليا المفتوحة 1983 - زوجي…

Gabungan warna semu kelimpahan fotoautotrof laut dan terrestrial global, dari September 2001 hingga Agustus 2017. Disediakan oleh Proyek SeaWiFS, NASA/Goddard Space Flight Center, dan ORBIMAGE . Biosfer (dari bahasa Yunani yaitu βίος bíos yang berarti kehidupan dan σφαῖρα sphaira yang berarti lingkungan) juga dikenal sebagai ekosfer (dari bahasa Yunani lingkungan dan σφαῖρα), adalah jumlah seluruh ekosistem di seluruh penjuru Bumi. Biosfer juga dapat disebut zona kehidupan di …

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber:…

Michael Laudrup Informasi pribadiNama lengkap Michael Laudrup[1]Tanggal lahir 15 Juni 1964 (umur 59)Tempat lahir Frederiksberg, DenmarkTinggi 1,83 m (6 ft 0 in)Posisi bermain Gelandang serangKarier junior0000–1973 Vanløse1973–1976 Brøndby1977–1981 KBKarier senior*Tahun Tim Tampil (Gol)1981–1982 KB 14 (3)1982–1983 Brøndby 38 (24)1983–1989 Juventus 102 (16)1983–1985 → Lazio (pinjaman) 60 (9)1989–1994 Barcelona 167 (49)1994–1996 Real Madrid 62 (12)…

Video game developer in Japan This article is about the Japanese company. For the American company, see Flagship Studios. Flagship Co., Ltd.Native name株式会社フラグシップRomanized nameKabushiki gaisha FuragushippuCompany typeKabushiki gaishaFoundedApril 24, 1997; 26 years ago (1997-04-24)FounderYoshiki OkamotoDefunctJune 1, 2007; 16 years ago (2007-06-01)FateDissolvedHeadquartersChūō-ku, Osaka, JapanArea servedVideo game developmentOwnerCapcomFlag…

Pour les articles homonymes, voir Monument national et CMN. Centre des monuments nationauxLogo du Centre des monuments nationaux.Hôtel de Sully, rue Saint-Antoine à Paris, siège du centre des monuments nationaux.HistoireFondation 21 avril 2000Prédécesseur Caisse nationale des monuments historiques et des sites (d)CadreSigle CMNType Agence publiqueForme juridique Établissement public national à caractère administratifDomaine d'activité Gestion des sites et monuments historiques et des at…

Standard 256-color mode on VGA graphics hardware This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mode 13h – news · newspapers · books · scholar · JSTOR (May 2…

الرجل النحيف النوع سلاح نووي بلد الأصل  الولايات المتحدة تاريخ الصنع المصمم مشروع Y المواصفات الطول 17 قدم (5.2 م) القطر 38 بوصة (97 سـم) حشوة بلوتونيوم تعديل مصدري - تعديل   الرجل النحيف (بالإنجليزية: Thin Man)‏ هو اسم رمزي لقنبلة نووية تعمل على مبدأ الانشطار النووي باستخدام …

Abdullah KamilMeninggal11 Juli 1991YogyakartaKebangsaanIndonesiaPekerjaanDiplomatDikenal atasDuta Besar RI untuk PBBSuami/istriAcharaAnakHalimah Agustina Kamil Abdullah Kamil (lahir sekitar tahun 1919 – meninggal di Yogyakarta, 11 Juli 1991)[1][2] adalah seorang diplomat Indonesia.[3] Ia pernah ditugaskan sebagai Duta Besar Luar Biasa dan Berkuasa Penuh Republik Indonesia di berbagai negara sahabat, yaitu Austria, Yugoslavia, Tunisia, serta Malaysia. Dari tahun 1979 hin…

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКл…

Irish population census in 2011 Census of Ireland, 2011 ← 2006 10 April 2011 (2011-04-10) 2016 → General informationCountryIrelandResultsTotal population4,588,252 ( 6.86%)Most populous ​countyDublin (1,273,069)Least populous ​countyLeitrim (31,796) The 2011 census of Ireland was held on Sunday, 10 April 2011. It was administered by the Central Statistics Office of Ireland and found the population to be 4,588,252 people.[1&#…

Berikut ini adalah daftar sekolah periode 2011/2012 di Kabupaten Kepulauan Selayar: Daftar TK/RA Negeri di Kepulauan Selayar No. NPSN Nama Sekolah Alamat 1 40317652 KB. AL- IHLAS Benteng utara 2 40317653 RA Buki Buki 3 40317654 RA Darul Faizin Pakbatteang 4 40317655 RA Nurbaeti Kampong Toa Nangkala 5 40317656 RA Nurul Hidayah Tile - Tile Tile - Tile 6 40317657 RA. Nurul Syuhada Onto 7 40317658 RA. Nurul Yaqin Benteng Jl. Syarif Al - Qadri 8 40317659 RA. Tanete Tanete 9 40316329 TK AL IKHLAS BENT…

Twentieth letter of many Semitic alphabets This article is about the Semitic letter. For the town in Nepal, see Resh, Nepal. ← Qoph Resh Shin →PhoenicianHebrewרAramaicSyriacܪArabicرPhonemic representationr (ɾ, ʁ, ʀ)Position in alphabet20Numerical value200Alphabetic derivatives of the PhoenicianGreekΡLatinRCyrillicР Resh is the twentieth letter of the Semitic abjads, including Phoenician rēš 𐤓, Hebrew rēš ר, Aramaic rēš 𐡓‎, Syriac rēš ܪ, and Arabic rāʾ ر. Its soun…

Cave site and burial site in New Zealand Ruakuri Cavelocation in New ZealandLocationWaitomoRegionNew ZealandCoordinates38°15′50″S 174°59′40″E / 38.26389°S 174.99444°E / -38.26389; 174.99444Site notesExcavation datesSpiral Drum Entrance 2004-2005OwnershipMostly Privately Owned Ruakuri Cave is one of the longer caves in the Waitomo area of New Zealand. It was first discovered by local Māori between 400 and 500 years ago. The name Te Ruakuri, or The Den of …

Cold War incident in divided Berlin Berlin Crisis of 1961Part of Cold WarU.S. M48 tanks face Soviet T-54 tanks at Checkpoint Charlie, October 1961.Date4 June – 9 November 1961LocationCheckpoint CharlieResult 'Stalemate' Erection of the Berlin Wall on 12–13 August 1961Belligerents  Soviet Union East GermanySupported by: Warsaw Pact (Except Albania)  United States West GermanySupported by: NATOCommanders and leaders Nikita Khrushchev Walter Ulbricht John F. Kennedy Kon…

Kembali kehalaman sebelumnya