Electric potential

Electric potential
Electric potential around two oppositely charged conducting spheres. Purple represents the highest potential, yellow zero, and cyan the lowest potential. The electric field lines are shown leaving perpendicularly to the surface of each sphere.
Common symbols
V, φ
SI unitvolt
Other units
statvolt
In SI base unitsV = kg⋅m2⋅s−3⋅A−1
Extensive?yes
DimensionM L2 T−3 I−1

Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ,[1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured in coulombs). By dividing out the charge on the particle a quotient is obtained that is a property of the electric field itself. In short, an electric potential is the electric potential energy per unit charge.

This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C−1) or volt (V). The electric potential at infinity is assumed to be zero.

In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only as a scalar potential. Instead, the electric field can be expressed as both the scalar electric potential and the magnetic vector potential.[2] The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations.

Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly infinite magnitude. Notably, the electric potential due to an idealized point charge (proportional to 1 ⁄ r, with r the distance from the point charge) is continuous in all space except at the location of the point charge. Though electric field is not continuous across an idealized surface charge, it is not infinite at any point. Therefore, the electric potential is continuous across an idealized surface charge. Additionally, an idealized line of charge has electric potential (proportional to ln(r), with r the radial distance from the line of charge) is continuous everywhere except on the line of charge.

Introduction

Classical mechanics explores concepts such as force, energy, and potential.[3] Force and potential energy are directly related. A net force acting on any object will cause it to accelerate. As an object moves in the direction of a force acting on it, its potential energy decreases. For example, the gravitational potential energy of a cannonball at the top of a hill is greater than at the base of the hill. As it rolls downhill, its potential energy decreases and is being translated to motion – kinetic energy.

It is possible to define the potential of certain force fields so that the potential energy of an object in that field depends only on the position of the object with respect to the field. Two such force fields are a gravitational field and an electric field (in the absence of time-varying magnetic fields). Such fields affect objects because of the intrinsic properties (e.g., mass or charge) and positions of the objects.

An object may possess a property known as electric charge. Since an electric field exerts force on a charged object, if the object has a positive charge, the force will be in the direction of the electric field vector at the location of the charge; if the charge is negative, the force will be in the opposite direction.

The magnitude of force is given by the quantity of the charge multiplied by the magnitude of the electric field vector,

Electrostatics

Electric potential of separate positive and negative point charges shown as color range from magenta (+), through yellow (0), to cyan (−). Circular contours are equipotential lines. Electric field lines leave the positive charge and enter the negative charge.
Electric potential in the vicinity of two opposite point charges.

An electric potential at a point r in a static electric field E is given by the line integral

where C is an arbitrary path from some fixed reference point to r; it is uniquely determined up to a constant that is added or subtracted from the integral. In electrostatics, the Maxwell-Faraday equation reveals that the curl is zero, making the electric field conservative. Thus, the line integral above does not depend on the specific path C chosen but only on its endpoints, making well-defined everywhere. The gradient theorem then allows us to write:

This states that the electric field points "downhill" towards lower voltages. By Gauss's law, the potential can also be found to satisfy Poisson's equation:

where ρ is the total charge density and denotes the divergence.

The concept of electric potential is closely linked with potential energy. A test charge, q, has an electric potential energy, UE, given by

The potential energy and hence, also the electric potential, is only defined up to an additive constant: one must arbitrarily choose a position where the potential energy and the electric potential are zero.

These equations cannot be used if , i.e., in the case of a non-conservative electric field (caused by a changing magnetic field; see Maxwell's equations). The generalization of electric potential to this case is described in the section § Generalization to electrodynamics.

Electric potential due to a point charge

The electric potential created by a charge, Q, is V = Q/(4πε0r). Different values of Q yield different values of electric potential, V, (shown in the image).

The electric potential arising from a point charge, Q, at a distance, r, from the location of Q is observed to be where ε0 is the permittivity of vacuum[4], VE is known as the Coulomb potential. Note that, in contrast to the magnitude of an electric field due to a point charge, the electric potential scales respective to the reciprocal of the radius, rather than the radius squared.

The electric potential at any location, r, in a system of point charges is equal to the sum of the individual electric potentials due to every point charge in the system. This fact simplifies calculations significantly, because addition of potential (scalar) fields is much easier than addition of the electric (vector) fields. Specifically, the potential of a set of discrete point charges qi at points ri becomes

where

  • r is a point at which the potential is evaluated;
  • ri is a point at which there is a nonzero charge; and
  • qi is the charge at the point ri.

And the potential of a continuous charge distribution ρ(r) becomes

where

  • r is a point at which the potential is evaluated;
  • R is a region containing all the points at which the charge density is nonzero;
  • r' is a point inside R; and
  • ρ(r') is the charge density at the point r'.

The equations given above for the electric potential (and all the equations used here) are in the forms required by SI units. In some other (less common) systems of units, such as CGS-Gaussian, many of these equations would be altered.

Generalization to electrodynamics

When time-varying magnetic fields are present (which is true whenever there are time-varying electric fields and vice versa), it is not possible to describe the electric field simply as a scalar potential V because the electric field is no longer conservative: is path-dependent because (due to the Maxwell-Faraday equation).

Instead, one can still define a scalar potential by also including the magnetic vector potential A. In particular, A is defined to satisfy:

where B is the magnetic field. By the fundamental theorem of vector calculus, such an A can always be found, since the divergence of the magnetic field is always zero due to the absence of magnetic monopoles. Now, the quantity is a conservative field, since the curl of is canceled by the curl of according to the Maxwell–Faraday equation. One can therefore write

where V is the scalar potential defined by the conservative field F.

The electrostatic potential is simply the special case of this definition where A is time-invariant. On the other hand, for time-varying fields, unlike electrostatics.

Gauge freedom

The electrostatic potential could have any constant added to it without affecting the electric field. In electrodynamics, the electric potential has infinitely many degrees of freedom. For any (possibly time-varying or space-varying) scalar field, 𝜓, we can perform the following gauge transformation to find a new set of potentials that produce exactly the same electric and magnetic fields:[5]

Given different choices of gauge, the electric potential could have quite different properties. In the Coulomb gauge, the electric potential is given by Poisson's equation

just like in electrostatics. However, in the Lorenz gauge, the electric potential is a retarded potential that propagates at the speed of light and is the solution to an inhomogeneous wave equation:

Units

The SI derived unit of electric potential is the volt (in honor of Alessandro Volta), denoted as V, which is why the electric potential difference between two points in space is known as a voltage. Older units are rarely used today. Variants of the centimetre–gram–second system of units included a number of different units for electric potential, including the abvolt and the statvolt.

Galvani potential versus electrochemical potential

Inside metals (and other solids and liquids), the energy of an electron is affected not only by the electric potential, but also by the specific atomic environment that it is in. When a voltmeter is connected between two different types of metal, it measures the potential difference corrected for the different atomic environments.[6] The quantity measured by a voltmeter is called electrochemical potential or fermi level, while the pure unadjusted electric potential, V, is sometimes called the Galvani potential, ϕ. The terms "voltage" and "electric potential" are a bit ambiguous but one may refer to either of these in different contexts.

Common formulas

Charge configuration Figure Electric potential
Infinite wire

where is uniform linear charge density.

Infinitely large surface

where is uniform surface charge density.

Infinitely long cylindrical volume

where is uniform linear charge density.

Spherical volume

outside the sphere, where is the total charge uniformly distributed in the volume.

inside the sphere, where is the total charge uniformly distributed in the volume.

Spherical surface

outside the sphere, where is the total charge uniformly distributed on the surface.

inside the sphere for uniform charge distribution.

Charged Ring

on the axis, where is the total charge uniformly distributed on the ring.

Charged Disc

on the axis, where is the uniform surface charge density.

Electric Dipole

on the equatorial plane.

on the axis (given that ), where can also be negative to indicate position at the opposite direction on the axis, and is the magnitude of electric dipole moment.

See also

References

  1. ^ Goldstein, Herbert (June 1959). Classical Mechanics. United States: Addison-Wesley. p. 383. ISBN 0201025108.
  2. ^ Griffiths, David J. (1999). Introduction to Electrodynamics. Pearson Prentice Hall. pp. 416–417. ISBN 978-81-203-1601-0.
  3. ^ Young, Hugh A.; Freedman, Roger D. (2012). Sears and Zemansky's University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754.
  4. ^ "2022 CODATA Value: vacuum electric permittivity". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  5. ^ Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 420. ISBN 013805326X.
  6. ^ Bagotskii VS (2006). Fundamentals of electrochemistry. p. 22. ISBN 978-0-471-70058-6.

Further reading

  • Politzer P, Truhlar DG (1981). Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems. Boston, MA: Springer US. ISBN 978-1-4757-9634-6.
  • Sen K, Murray JS (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier. ISBN 978-0-444-82353-3.
  • Griffiths DJ (1999). Introduction to Electrodynamics (3rd. ed.). Prentice Hall. ISBN 0-13-805326-X.
  • Jackson JD (1999). Classical Electrodynamics (3rd. ed.). USA: John Wiley & Sons, Inc. ISBN 978-0-471-30932-1.
  • Wangsness RK (1986). Electromagnetic Fields (2nd., Revised, illustrated ed.). Wiley. ISBN 978-0-471-81186-2.

Read other articles:

Otto Emil VoitLahir(1845-02-05)5 Februari 1845JermanMeninggal1 Juni 1906(1906-06-01) (umur 61)Louisville, KentuckyPengabdianAmerika SerikatDinas/cabangAngkatan Darat Amerika SerikatLama dinas1864 - 1898PangkatSersanKesatuanU.S. 7th Cavalry RegimentPerang/pertempuranPeperangan Indian Pertempuran Little Bighorn PenghargaanMedal of Honor Otto Emil Voit (5 Februari 1845 – 1 Juni 1906) adalah seorang prajurit Angkatan Darat Amerika Serikat. Ia meraih penghargaan tertinggi di…

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Sud…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Peta yang menunjukkan Garis Schuster Garis Schuster (bahasa Luksemburg: Schuster-Linn) adalah garis pertahanan yang dibentuk oleh pemerintah Luksemburg di perbatasannya dengan Jerman Nazi dan Republik Prancis Ketiga tidak lama sebelum Perang Dunia II …

Gnathonemus petersii memiliki rasio konsumsi otak terhadap oksigen tertinggi pada vetebrataAcanthonus armatus memiliki rasio massa otak terhadap massa tubuh terkecil Kecerdasan ikan adalah ...hasil dari proses memperoleh, menyimpan dalam memori, mengambil, memadukan, membandingkan, dan menggunakan dalam konteks informasi dan keterampilan konseptual yang baru,[1] yang berlaku untuk ikan. Menurut Culum Brown dari Macquarie University, ikan-Ikan lebih cerdas daripada kelihatannya. Di banyak…

العلاقات الإيطالية الكولومبية إيطاليا كولومبيا   إيطاليا   كولومبيا تعديل مصدري - تعديل   العلاقات الإيطالية الكولومبية هي العلاقات الثنائية التي تجمع بين إيطاليا وكولومبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وج…

Kompleks Peluncuran 48Kompleks Peluncuran 48 seperti yang terlihat dari International Space Station Pada Mei 2020Situs peluncuranKennedy Space CenterNama pendekLC-48OperatorNASAJumlah landasan1 (2 direncanakan)StatusKonstruksi diselesaikan Kompleks Peluncuran 48 (Bahasa Inggris: Launch Complex 48, disingkat LC-48) adalah situs peluncuran multi-pengguna yang digunakan untuk meluncurkan peluncur kecil dan wahana antariksa. Kompleks Peluncuran ini terletak di selatan Kompleks Peluncuran 39A dan uta…

Universitas Mandalayမႏၲေလးတကၠသိုလ္JenisPublicRektorKhin Swe OoLokasiMahaaungmye Mandalay, MyanmarKoordinat: 21°57′30″N 96°5′30″E / 21.95833°N 96.09167°E / 21.95833; 96.09167AfiliasiAUNSitus webwww.mu.edu.mm Universitas Mandalay (Bahasa Myanmar: မန္တလေးတက္ကသိုလ် dibaca [màɴdəlé tɛʔkəθò]) merupakan sebuah universitas seni liberal publik berlokasi di Mandalay, Myanmar. Sebelumnya berafiliasi den…

Ne doit pas être confondu avec Intersexuation ou Travestissement. Groupe de personnes trans à la marche des fiertés 2022 de Lima La transidentité est le fait, pour une personne transgenre, d'avoir une identité de genre différente du genre assigné à la naissance[1],[2],[3], contrairement à une personne cisgenre qui vit, quant à elle, en situation de cisidentité. Les termes « transsexuel » et « transsexualisme » sont des termes médicaux anciens, abandonnés par …

Dolphin-class brigantine For other ships with the same name, see USS Porpoise. USS Porpoise History United States NameUSS Porpoise Ordered30 June 1834 Laid down1835 Launched31 May 1836 Commissioned1836 Decommissionedca. July 1847 Recommissioned1 January 1848 Decommissioned3 August 1852 RecommissionedMay 1853 FateDisappeared September 1854 General characteristics TypeBrig Tonnage224 Length88 ft (27 m) Beam25 ft (7.6 m) Draft11 ft (3.4 m) PropulsionSail Complement80 o…

Cinema of Pakistan List of Pakistani films Pakistani Animation Highest Grossing Pre 1950 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 20142015 2016 2017 2018 2019 2020s 2020 2021 2022 2023 …

Cet article est une ébauche concernant une localité bulgare. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tchiprovtsi Чипровци Héraldique Administration Pays Bulgarie Obchtina Tchiprovtsi Oblast Montana Maire Zakharïn Ivanov Zamfirov (UAAS) Code postal 3460 Démographie Population 2 026 hab. (2010) Géographie Coordonnées 43° 23′ 04″ nord, 22° 52′ 51″ …

Boarding school in Seoul, South Korea Yongsan High School(용산고등학교, 龍山高等學校)LocationYongsan, SeoulSouth KoreaInformationTypePublic, Day & boardingMotto至誠(Hangul: 지성; English: Diligence)Established1946GenderBoysEnrollment900+CampusurbanColor(s)BlueWebsiteyongsan.sen.hs.kr Yongsan High School (Korean: 용산고등학교) is a public high school in Yongsan, Seoul, South Korea for boys in grades 10 to 12 (ages 16 to 19). It is one of the few public schools i…

Uruguayan footballer and manager (born 1958) This biography of a living person does not include any references or sources. Please help by adding reliable sources. Contentious material about living people that is unsourced or poorly sourced must be removed immediately.Find sources: Hugo de León – news · newspapers · books · scholar · JSTOR (July 2023) (Learn how and when to remove this message)You can help expand this article with text translated from the…

960e régiment d'aviation de chasse(ru) 960-й истребительный авиационный полк Création 1er août 1942 Dissolution 1er mars 1946 Pays Union soviétique Branche Forces de défense anti-aérienne soviétiques Type Régiment Rôle Lutte antiaérienne Effectif Deux escadrons Guerres Seconde Guerre mondiale Front de l'Est modifier  Le 960e régiment d'aviation de chasse (en russe : 960-й истребительный авиационный полк) de son…

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власти …

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「弐」…

  لمعانٍ أخرى، طالع كنيسة الصليب المقدس (توضيح). كنيسة الصليب المقدس كنيسة الصليب المقدس في الليلكنيسة الصليب المقدس في الليل معلومات أساسيّة الموقع حي العزيزية, حلب  سوريا الإحداثيات الجغرافية 36°12′45″N 37°09′19″E / 36.2124°N 37.1553°E / 36.2124; 37.1553 الانتماء الديني ك…

Whitfield « Whit » DiffieBiographieNaissance 5 juin 1944 (79 ans)New YorkNom dans la langue maternelle Bailey Whitfield 'Whit' DiffieNationalité américaineFormation Massachusetts Institute of Technology (baccalauréat universitaire ès sciences) (jusqu'en 1965)Université StanfordJamaica High School (en)Activités Cryptographe, mathématicien, informaticienAutres informationsA travaillé pour Université de LondresDomaine Cryptographie, mathématiquesMembre de Royal Society (2…

Expedition 52Statistiche missioneNome missioneExpedition 52 Inizio missione2 giugno 2017 Fine missione2 settembre 2017 Membri equipaggio6 Lancio e rientroFotografia dell'equipaggio Missioni ExpeditionPrecedenteSuccessivaExpedition 51 Expedition 53 Le date sono espresse in UTC Modifica dati su Wikidata · Manuale Expedition 52 è stata la 52ª e attuale missione di lunga durata verso la Stazione spaziale internazionale. L'Expedition 52 ha avuto inizio ufficialmente il 2 giugno 2017, quando i…

Alexander PierceAlexander Pierce interpretato da Robert Redford nel film Captain America: The Winter Soldier UniversoUniverso Marvel Lingua orig.Inglese AutoriBob Harras Paul Neary EditoreMarvel Comics 1ª app.agosto 1988 1ª app. inNick Fury vs. S.H.I.E.L.D. (vol. 1[1]) n. 3 Editore it.Star Comics 1ª app. it.gennaio 1990 1ª app. it. inNick Fury contro S.H.I.E.L.D. n. 3 Interpretato daNeil Roberts [2] Robert Redford [3] Voci italianePatrizio Prata &…

Kembali kehalaman sebelumnya