Galois group

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.

Definition

Suppose that is an extension of the field (written as and read "E over F"). An automorphism of is defined to be an automorphism of that fixes pointwise. In other words, an automorphism of is an isomorphism such that for each . The set of all automorphisms of forms a group with the operation of function composition. This group is sometimes denoted by

If is a Galois extension, then is called the Galois group of , and is usually denoted by .[1]

If is not a Galois extension, then the Galois group of is sometimes defined as , where is the Galois closure of .

Galois group of a polynomial

Another definition of the Galois group comes from the Galois group of a polynomial . If there is a field such that factors as a product of linear polynomials

over the field , then the Galois group of the polynomial is defined as the Galois group of where is minimal among all such fields.

Structure of Galois groups

Fundamental theorem of Galois theory

One of the important structure theorems from Galois theory comes from the fundamental theorem of Galois theory. This states that given a finite Galois extension , there is a bijection between the set of subfields and the subgroups Then, is given by the set of invariants of under the action of , so

Moreover, if is a normal subgroup then . And conversely, if is a normal field extension, then the associated subgroup in is a normal group.

Lattice structure

Suppose are Galois extensions of with Galois groups The field with Galois group has an injection which is an isomorphism whenever .[2]

Inducting

As a corollary, this can be inducted finitely many times. Given Galois extensions where then there is an isomorphism of the corresponding Galois groups:

Examples

In the following examples is a field, and are the fields of complex, real, and rational numbers, respectively. The notation F(a) indicates the field extension obtained by adjoining an element a to the field F.

Computational tools

Cardinality of the Galois group and the degree of the field extension

One of the basic propositions required for completely determining the Galois groups[3] of a finite field extension is the following: Given a polynomial , let be its splitting field extension. Then the order of the Galois group is equal to the degree of the field extension; that is,

Eisenstein's criterion

A useful tool for determining the Galois group of a polynomial comes from Eisenstein's criterion. If a polynomial factors into irreducible polynomials the Galois group of can be determined using the Galois groups of each since the Galois group of contains each of the Galois groups of the

Trivial group

is the trivial group that has a single element, namely the identity automorphism.

Another example of a Galois group which is trivial is Indeed, it can be shown that any automorphism of must preserve the ordering of the real numbers and hence must be the identity.

Consider the field The group contains only the identity automorphism. This is because is not a normal extension, since the other two cube roots of ,

and

are missing from the extension—in other words K is not a splitting field.

Finite abelian groups

The Galois group has two elements, the identity automorphism and the complex conjugation automorphism.[4]

Quadratic extensions

The degree two field extension has the Galois group with two elements, the identity automorphism and the automorphism which exchanges and . This example generalizes for a prime number

Product of quadratic extensions

Using the lattice structure of Galois groups, for non-equal prime numbers the Galois group of is

Cyclotomic extensions

Another useful class of examples comes from the splitting fields of cyclotomic polynomials. These are polynomials defined as

whose degree is , Euler's totient function at . Then, the splitting field over is and has automorphisms sending for relatively prime to . Since the degree of the field is equal to the degree of the polynomial, these automorphisms generate the Galois group.[5] If then

If is a prime , then a corollary of this is

In fact, any finite abelian group can be found as the Galois group of some subfield of a cyclotomic field extension by the Kronecker–Weber theorem.

Finite fields

Another useful class of examples of Galois groups with finite abelian groups comes from finite fields. If q is a prime power, and if and denote the Galois fields of order and respectively, then is cyclic of order n and generated by the Frobenius homomorphism.

Degree 4 examples

The field extension is an example of a degree field extension.[6] This has two automorphisms where and Since these two generators define a group of order , the Klein four-group, they determine the entire Galois group.[3]

Another example is given from the splitting field of the polynomial

Note because the roots of are There are automorphisms

generating a group of order . Since generates this group, the Galois group is isomorphic to .

Finite non-abelian groups

Consider now where is a primitive cube root of unity. The group is isomorphic to S3, the dihedral group of order 6, and L is in fact the splitting field of over

Quaternion group

The Quaternion group can be found as the Galois group of a field extension of . For example, the field extension

has the prescribed Galois group.[7]

Symmetric group of prime order

If is an irreducible polynomial of prime degree with rational coefficients and exactly two non-real roots, then the Galois group of is the full symmetric group [2]

For example, is irreducible from Eisenstein's criterion. Plotting the graph of with graphing software or paper shows it has three real roots, hence two complex roots, showing its Galois group is .

Comparing Galois groups of field extensions of global fields

Given a global field extension (such as ) and equivalence classes of valuations on (such as the -adic valuation) and on such that their completions give a Galois field extension

of local fields, there is an induced action of the Galois group on the set of equivalence classes of valuations such that the completions of the fields are compatible. This means if then there is an induced isomorphism of local fields

Since we have taken the hypothesis that lies over (i.e. there is a Galois field extension ), the field morphism is in fact an isomorphism of -algebras. If we take the isotropy subgroup of for the valuation class

then there is a surjection of the global Galois group to the local Galois group such that there is an isomorphism between the local Galois group and the isotropy subgroup. Diagrammatically, this means

where the vertical arrows are isomorphisms.[8] This gives a technique for constructing Galois groups of local fields using global Galois groups.

Infinite groups

A basic example of a field extension with an infinite group of automorphisms is , since it contains every algebraic field extension . For example, the field extensions for a square-free element each have a unique degree automorphism, inducing an automorphism in

One of the most studied classes of infinite Galois group is the absolute Galois group, which is an infinite, profinite group defined as the inverse limit of all finite Galois extensions for a fixed field. The inverse limit is denoted

,

where is the separable closure of the field . Note this group is a topological group.[9] Some basic examples include and

.[10][11]

Another readily computable example comes from the field extension containing the square root of every positive prime. It has Galois group

,

which can be deduced from the profinite limit

and using the computation of the Galois groups.

Properties

The significance of an extension being Galois is that it obeys the fundamental theorem of Galois theory: the closed (with respect to the Krull topology) subgroups of the Galois group correspond to the intermediate fields of the field extension.

If is a Galois extension, then can be given a topology, called the Krull topology, that makes it into a profinite group.

See also

Notes

  1. ^ Some authors refer to as the Galois group for arbitrary extensions and use the corresponding notation, e.g. Jacobson 2009.
  2. ^ a b Lang, Serge. Algebra (Revised Third ed.). pp. 263, 273.
  3. ^ a b "Abstract Algebra" (PDF). pp. 372–377. Archived (PDF) from the original on 2011-12-18.
  4. ^ Cooke, Roger L. (2008), Classical Algebra: Its Nature, Origins, and Uses, John Wiley & Sons, p. 138, ISBN 9780470277973.
  5. ^ Dummit; Foote. Abstract Algebra. pp. 596, 14.5 Cyclotomic Extensions.
  6. ^ Since as a vector space.
  7. ^ Milne. Field Theory. p. 46.
  8. ^ "Comparing the global and local galois groups of an extension of number fields". Mathematics Stack Exchange. Retrieved 2020-11-11.
  9. ^ "9.22 Infinite Galois theory". The Stacks project.
  10. ^ Milne. "Field Theory" (PDF). p. 98. Archived (PDF) from the original on 2008-08-27.
  11. ^ "Infinite Galois Theory" (PDF). p. 14. Archived (PDF) from the original on 6 April 2020.

References

Read other articles:

Hari Yang DijanjikanPoster filmSutradaraFajar BustomiProduserAgung HaryantoDitulis olehDani RachmanPemeran Vino G. Bastian Agla Artalidia Graciella Abigail SinematograferMartua RaymondPenyuntingWildan M Cahyo APerusahaanproduksiKlikFilm ProductionsDistributorKlikFilmTanggal rilis 12 Mei 2021 (2021-05-12) Durasi78 menitNegaraIndonesiaBahasaBahasa Indonesia Hari Yang Dijanjikan adalah film drama Indonesia tahun 2021 yang disutradarai oleh Fajar Bustomi. Film ini merupakan proyek ketiga dari K…

FC Kuban KrasnodarNama lengkapFootball Club Kuban KrasnodarJulukanKazaki, Zholto-zelionye (Yellow-Green)Berdiri1928StadionKuban Stadium,Krasnodar(Kapasitas: 32,000)Ketua Aleksander TkachovManajer Sergei PavlovLigaLiga Utama Rusia2008Division 1 Rusia 2 Kostum kandang Kostum tandang FC Kuban Krasnodar (Rusia: ФК Кубань Краснодарcode: ru is deprecated ) merupakan sebuah tim sepak bola Rusia yang bermain di Liga Utama Rusia. Bermarkas di Krasnodar, Rusia. Didirikan pada tahun 1928. …

Dirección General de Arquitectura, Vivienda y Suelo Último logotipo de la Dirección General (2018-2020) Sede del MinisterioLocalizaciónPaís España EspañaInformación generalJurisdicción EspañaTipo Dirección GeneralSede Paseo de la Castellana, 6728046OrganizaciónDepende de Secretaría General de ViviendaEntidad superior Ministerio de FomentoPresupuesto 482,4 millones de € (2019)HistoriaFundación 1978 (primera vez)1987 (segunda vez)Disolución 1987 (primera vez)2020 (s…

Hyun Woo-SungLahir16 Maret 1979 (umur 44)Korea SelatanPendidikanSeoul National University of Science and Technology – Materials Science and EngineeringPekerjaanAktorTahun aktif2010-sekarangNama KoreaHangul현우성 Alih AksaraHyeon U-seongMcCune–ReischauerHyŏn U-sǒng Hyun Woo-Sung (lahir 16 Maret 1979) adalah aktor Korea Selatan.[1] Filmografi Seri televisi Tahun Judul Peran Jaringan 2010 Three Sisters Lee Min-Chul SBS 2011 You Are So Pretty Byun Kang-Soo MBC Heaven's Gar…

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен · …

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2015) الأمثلة متعددة الأهداف (بالإنجليزية: Multi-objective optimization)‏ الأمثلة متعددة الأهداف (المعروف أيضا باسم البرمجة متعددة الاهداف أو الأمثلة متعددة المعايير) هو مجال ت…

Novita Wijayanti Anggota Dewan Perwakilan RakyatRepublik IndonesiaPetahanaMulai menjabat 1 Oktober 2019Daerah pemilihanJawa Tengah VIIIMasa jabatan1 Oktober 2014 – 30 September 2019Daerah pemilihanJawa Tengah VIII Informasi pribadiLahirNovita Wijayanti24 November 1979 (umur 44)Karangpucung, CilacapKebangsaanIndonesiaPartai politikGerindra (2013–sekarang)Afiliasi politiklainnyaPDI-P (2004–2013)Alma materUniversitas Jenderal SoedirmanPekerjaanPolitikusSunting kotak info…

American travel and food show Anthony Bourdain: No ReservationsCreated byZero Point Zero ProductionPresented byAnthony BourdainCountry of originUnited StatesNo. of episodes142ProductionRunning timeDomestic: one hour (approx. 42 min. per episode); International: approx. 48 min. per episodeOriginal releaseNetworkTravel ChannelReleaseJuly 25, 2005 (2005-07-25) –November 5, 2012 (2012-11-05) Anthony Bourdain: No Reservations is an American travel and food show that originally aired …

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

العلاقات الهندية الإسواتينية الهند إسواتيني   الهند   إسواتيني تعديل مصدري - تعديل   العلاقات الهندية الإسواتينية هي العلاقات الثنائية التي تجمع بين الهند وإسواتيني.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن…

العلاقات البريطانية الإريترية المملكة المتحدة إريتريا   المملكة المتحدة   إريتريا تعديل مصدري - تعديل   العلاقات البريطانية الإريترية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وإريتريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة…

جزء من السلسلة الاقتصادية عنالرأسمالية المفاهيم البنك مركزي القانون التجاري قانون الشركات الأفضلية النسبية قانون المنافسة قانون حماية المستهلك حقوق التأليف والنشر المؤسسة التجارية الرأسمالية المالية الحرية الاقتصادية الليبرالية الاقتصادية التنظيم المالي السياسة الما…

  هذه المقالة عن وحدة قياس شدة التيار. لمعانٍ أخرى، طالع أندريه ماري أمبير. أمبيرمعلومات عامةالنوع وحدة دولية أساسية[1] — وحدة متماسكة حسب نظام الوحدات الدولي — وحدة مشتقة من UCUM جزء من MKSA system of units (en) تستخدم لقياس شدة التيار الكهربائي[1][2][3] — magnetic scalar potenti…

Cet article est une ébauche concernant les forces armées des États-Unis. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Rose. Maurice Rose Naissance 26 novembre 1899 Décès 30 mars 1945 (à 45 ans) Origine Américain Allégeance États-Unis Arme United States Army Grade Major-général Conflits Première Guerre mondialeSeconde Guerre mondiale modifier  Maurice Rose (n…

Pulau Pateloran BaratPulau Pulau Pateloran Barat merupakan pulau yang berada pada gugusan Kepulauan Seribu yang secara administratif termasuk dalam wilayah Kabupaten Administratif Kepulauan Seribu provinsi DKI Jakarta bersamaan dengan Pulau Pateloran Timur yang berpasir kasar serta bercampur pecahan karang yang menjadi tempat favorit bagi penyu sisik bertelur, Pulau Penyaliran Barat dan Pulau Penyaliran Timur dijadikan daerah konservasi pengembangan hutan bakau Lihat pula Kabupaten Administratif…

مقاطعة تشارلز سيتي     الإحداثيات 37°21′N 77°04′W / 37.35°N 77.06°W / 37.35; -77.06   [1] تاريخ التأسيس 1634  سبب التسمية تشارلز الأول ملك إنجلترا  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى فرجينيا (25 يونيو 1788–)  العاصمة تشارلز سيتي …

Questa voce sull'argomento calciatori spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Sergio Ballesteros Nazionalità  Spagna Altezza 188 cm Peso 93 kg Calcio Ruolo Difensore Termine carriera 2013 Carriera Giovanili 1994-1995 Levante Squadre di club1 1995-1996 Levante16 (3)1996-2000 Tenerife108 (2)2000-2001 Rayo Vallecano36 (2)2001-2004 Villarreal81 (1)2004-2008 …

Art and architecture of Buddhist temples in Thailand This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Thai temple art and architecture – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Interior of Ubosot of Wat Hong Rattanaram, Bangkok Thai temple art…

Statutory body in India Central Information Commission(केंद्रीय सूचना आयोग)The official logo of Central Information CommissionCommission overviewFormed12 October 2005; 18 years ago (2005-10-12)[1]Annual budget₹25.1935 crore (US$3.2 million) (2015–16)[2]Commission executiveHeeralal Samariya, Retd.IASKey documentRTI Act, 2005 (Act no. 22 of 2005)Websitewww.cic.gov.in The Central Information Commission is a statutory body,…

Phase in U.S. electoral politics (1896–1932) Fourth Party System ← Third 1896–1932 Fifth → United States presidential election results between 1896 and 1928. Blue shaded states usually voted for the Democratic Party, while red shaded states usually voted for the Republican Party. The Fourth Party System was the political party system in the United States from about 1896 to 1932 that was dominated by the Republican Party, except the 1912 split in which Democrats captured…

Kembali kehalaman sebelumnya