Skolem arithmetic

In mathematical logic, Skolem arithmetic is the first-order theory of the natural numbers with multiplication, named in honor of Thoralf Skolem. The signature of Skolem arithmetic contains only the multiplication operation and equality, omitting the addition operation entirely.

Skolem arithmetic is weaker than Peano arithmetic, which includes both addition and multiplication operations.[1] Unlike Peano arithmetic, Skolem arithmetic is a decidable theory. This means it is possible to effectively determine, for any sentence in the language of Skolem arithmetic, whether that sentence is provable from the axioms of Skolem arithmetic. The asymptotic running-time computational complexity of this decision problem is triply exponential.[2]

Axioms

We define the following abbreviations.

  • a | b := ∃n.(an = b)
  • One(e) := ∀n.(ne = n)
  • Prime(p) := ¬One(p) ∧ ∀a.(a | p → (One(a) ∨ a = p))
  • PrimePower(p, P) := Prime(p) ∧ p | P ∧ ∀q.(Prime(q) ∧ ¬(q = p) → ¬(q | P))
  • InvAdicAbs(p, n, P) := PrimePower(p, P) ∧ P | n ∧ ∀Q.((PrimePower(p, Q) ∧ Q | n) → Q | P) [P is the largest power of p dividing n]
  • AdicAbsDiffn(p, a, b) := Prime(p) ∧ p | ab ∧ ∃P.∃Q.(InvAdicAbs(p, a, P) ∧ InvAdicAbs(p, b, Q) ∧ Q = pnP) for each integer n > 0. [The largest power of p dividing b is pn times the largest power of p dividing a]

The axioms of Skolem arithmetic are:[3]

  1. a.∀b.(ab = ba)
  2. a.∀b.∀c.((ab)c = a(bc))
  3. e.One(e)
  4. a.∀b.(One(ab) → One(a) ∨ One(b))
  5. a.∀b.∀c.(ac = bca = b)
  6. a.∀b.(an = bna = b) for each integer n > 0
  7. x.∃a.∃r.(x = arn ∧ ∀b.∀s.(x = bsna | b)) for each integer n > 0
  8. a.∃p.(Prime(p) ∧ ¬(p | a)) [Infinitude of primes]
  9. p.∀P.∀Q.((PrimePower(p, P) ∧ PrimePower(p, Q)) → (P | QQ | P))
  10. p.∀n.(Prime(p) → ∃P.InvAdicAbs(p,n,P))
  11. n.∀m.(n = m ↔ ∀p.(Prime(p) → ∃P.(InvAdicAbs(p, n, P) ∧ InvAdicAbs(p, m, P)))) [Unique factorization]
  12. p.∀n.∀m.(Prime(p) → ∃P.∃Q.(InvAdicAbs(p, n, P) ∧ InvAdicAbs(p, m, Q) ∧ InvAdicAbs(p, nm, PQ))) [p-adic absolute value is multiplicative]
  13. a.∀b.(∀p.(Prime(p) → ∃P.∃Q.(InvAdicAbs(p, a, P) ∧ InvAdicAbs(p, b, Q) ∧ P | Q)) → a | b) [If the p-adic valuation of a is less than that of b for every prime p, then a | b]
  14. a.∀b.∃c.∀p(Prime(p) → (((p | a → ∃P.(InvAdicAbs(p, b, P) ∧ InvAdicAbs(p, c, P))) ∧ ((p | b) → (p | a)))) [Deleting from the prime factorization of b all primes not dividing a]
  15. a.∃b.∀p.(Prime(p) → (∃P.(InvAdicAbs(p, a, P) ∧ InvAdicAbs(p, b, pP))) ∧ (p | bp | a))) [Increasing each exponent in the prime factorization of a by 1]
  16. a.∀b.∃c.∀p.(Prime(p) → ((AdicAbsDiffn(p, a, b) → InvAdicAbs(p, c, p)) ∧ (p | c → AdicAbsDiffn(p, a, b))) for each integer n > 0 [Product of those primes p such that the largest power of p dividing b is pn times the largest power of p dividing a]

Expressive power

First-order logic with equality and multiplication of positive integers can express the relation . Using this relation and equality, we can define the following relations on positive integers:

  • Divisibility:
  • Greatest common divisor:
  • Least common multiple:
  • the constant :
  • Prime number:
  • Number is a product of primes (for a fixed ):
  • Number is a power of some prime:
  • Number is a product of exactly prime powers:

Idea of decidability

The truth value of formulas of Skolem arithmetic can be reduced to the truth value of sequences of non-negative integers constituting their prime factor decomposition, with multiplication becoming point-wise addition of sequences. The decidability then follows from the Feferman–Vaught theorem that can be shown using quantifier elimination. Another way of stating this is that first-order theory of positive integers is isomorphic to the first-order theory of finite multisets of non-negative integers with the multiset sum operation, whose decidability reduces to the decidability of the theory of elements.

In more detail, according to the fundamental theorem of arithmetic, a positive integer can be represented as a product of prime powers:

If a prime number does not appear as a factor, we define its exponent to be zero. Thus, only finitely many exponents are non-zero in the infinite sequence . Denote such sequences of non-negative integers by .

Now consider the decomposition of another positive number,

The multiplication corresponds point-wise addition of the exponents:

Define the corresponding point-wise addition on sequences by:

Thus we have an isomorphism between the structure of positive integers with multiplication, and of point-wise addition of the sequences of non-negative integers in which only finitely many elements are non-zero, .

From Feferman–Vaught theorem for first-order logic, the truth value of a first-order logic formula over sequences and pointwise addition on them reduces, in an algorithmic way, to the truth value of formulas in the theory of elements of the sequence with addition, which, in this case, is Presburger arithmetic. Because Presburger arithmetic is decidable, Skolem arithmetic is also decidable.

Complexity

Ferrante & Rackoff (1979, Chapter 5) establish, using Ehrenfeucht–Fraïssé games, a method to prove upper bounds on decision problem complexity of weak direct powers of theories. They apply this method to obtain triply exponential space complexity for , and thus of Skolem arithmetic.

Grädel (1989, Section 5) proves that the satisfiability problem for the quantifier-free fragment of Skolem arithmetic belongs to the NP complexity class.

Decidable extensions

Thanks to the above reduction using Feferman–Vaught theorem, we can obtain first-order theories whose open formulas define a larger set of relations if we strengthen the theory of multisets of prime factors. For example, consider the relation that is true if and only if and have the equal number of distinct prime factors:

For example, because both sides denote a number that has two distinct prime factors.

If we add the relation to Skolem arithmetic, it remains decidable. This is because the theory of sets of indices remains decidable in the presence of the equinumerosity operator on sets, as shown by the Feferman–Vaught theorem.

Undecidable extensions

An extension of Skolem arithmetic with the successor predicate, can define the addition relation using Tarski's identity:[4][5]

and defining the relation on positive integers by

Because it can express both multiplication and addition, the resulting theory is undecidable.

If we have an ordering predicate on natural numbers (less than, ), we can express by

so the extension with is also undecidable.

See also

References

Bibliography

  • Bès, Alexis (2001). "A Survey of Arithmetical Definability" (PDF). In Crabbé, Marcel; Point, Françoise; Michaux, Christian (eds.). A Tribute to Maurice Boffa. Brussels: Societé mathématique de Belgique. pp. 1–54.
  • Cegielski, Patrick (1981), "Théorie élémentaire de la multiplication des entiers naturels", in Berline, Chantal; McAloon, Kenneth; Ressayre, Jean-Pierre (eds.), Model Theory and Arithmetic, Berlin: Springer, pp. 44–89.

Read other articles:

Peta Kabupaten Morowali Utara di Sulawesi Tengah Berikut adalah daftar kecamatan dan kelurahan di Kabupaten Morowali Utara, Provinsi Sulawesi Tengah, Indonesia. Kabupaten Morowali Utara terdiri dari 10 Kecamatan, 3 Kelurahan dan 122 Desa dengan luas wilayah 10.004,28 km² dan jumlah penduduk sebesar 117.164 jiwa dengan sebaran penduduk 12 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kabupaten Morowali Utara, adalah sebagai berikut: Kode Kemendagri Kecamatan Jumlah Kelurahan…

2022 video game 2022 video gameTom Clancy's Rainbow Six ExtractionDeveloper(s)Ubisoft MontrealPublisher(s)UbisoftDirector(s)Patrik MethéProducer(s)Antoine Vimal de MonteilDesigner(s)Alicia FortierSeriesTom Clancy's Rainbow SixEngineAnvilNext 2.0Platform(s)PlayStation 4PlayStation 5Google StadiaWindowsXbox OneXbox Series X/SReleaseJanuary 20, 2022[1]Genre(s)Tactical shooterMode(s)Multiplayer Tom Clancy's Rainbow Six Extraction (originally known as Tom Clancy's Rainbow Six Quarantine) is …

Hj.Dewi CoryatiM.Si. Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2009Daerah pemilihanBengkulu Informasi pribadiLahir9 Agustus 1964 (umur 59)Jakarta, IndonesiaPartai politikPartai Amanat NasionalSuami/istriPriagung SupraptoAnak2Alma materInstitut Pertanian Bogor Universitas IndonesiaSunting kotak info • L • B Dewi Coryati (lahir 9 Agustus 1964) adalah politikus Indonesia yang menjabat sebagai anggota DPR-RI selama tiga periode (2009–…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Ivan ShamarinInformasi pribadiNama lengkap Ivan Sergeyevich ShamarinTanggal lahir 7 Maret 1992 (umur 32)Tinggi 1,74 m (5 ft 8+1⁄2 in)Posisi bermain GelandangInformasi klubKlub saat ini Tidak terikatKarier senior*Tahun Tim Tampil…

Weston McKennie McKennie bersama timnas Amerika Serikat pada Piala Emas CONCACAF 2019Informasi pribadiNama lengkap Weston James Earl McKennie[1]Tanggal lahir 28 Agustus 1998 (umur 25)Tempat lahir Little Elm, Texas, Amerika Serikat[2]Tinggi 185 cm (6 ft 1 in)[3]Posisi bermain GelandangInformasi klubKlub saat ini Leeds United(dipinjam dari Juventus)Nomor 28Karier junior2009–2016 FC Dallas2016–2017 Schalke 04Karier senior*Tahun Tim Tampil (Gol)2017–…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري النمساوي 1951–52 تفاصيل الموسم الدوري النمساوي  النسخة 41  البلد النمسا  المنظم اتحاد النمسا ل…

Kedatangan anak-anak pengungsi Yahudi di pelabuhan London pada Februari 1939 Frank Meisler Kindertransport – The Arrival (2006) berdiri di luar stasiun Jalan Liverpool di London tengah Kindertransport (Jerman untuk transportasi anak-anak) adalah sebuah upaya penyelamatan terorganisir yang dialkukan selama sembilan bulan sebelum Perang Dunia Kedua. Britania Raya membawa sekitar 10.000 anak Yahudi dari Jerman Nazi, beserta wilayah pendudukan Nazi di Austria, Cekoslowakia, Polandia dan Kota Bebas…

Jane KrakowskiKrakowski at the 60th Primetime Emmy Awards on September 21, 2008LahirJane Krajkowski11 Oktober 1968 (umur 55)Parsippany-Troy Hills, New Jersey, United StatesPekerjaanActress, singerTahun aktif1983–presentPasanganRobert Godley (2009–2013)Anak1 Jane Krakowski (/krəˈkaʊski/; born Jane Krajkowski;[1] lahir 11 Oktober 1968) adalah penyanyi dan aktris film berkebangsaan Amerika Serikat. Namanya dikenal secara luas melalui perannya sebagai Jenna Maroney dalam Sit…

قيصرياني Καισαριανή Kaisariani   الموقع الجغرافي تقسيم إداري البلد اليونان[1] المنطقة الإدارية أتيكا وسط أثينا خصائص جغرافية إحداثيات 37°57′48″N 23°45′55″E / 37.963333333333°N 23.765277777778°E / 37.963333333333; 23.765277777778 [2]  المساحة 7.841 كيلومتر مربع[3]  الأرض 7.84 كم² الارتفاع …

Jean-Claude Duvalier Presiden HaitiMasa jabatan22 April 1971 – 7 Februari 1986 PendahuluFrançois DuvalierPenggantiHenri Namphy Informasi pribadiLahir(1951-07-03)3 Juli 1951Port-au-Prince, HaitiMeninggal4 Oktober 2014(2014-10-04) (umur 63)Port-au-Prince, HaitiKebangsaanHaitiSuami/istriMichèle Bennett(1980–1990)Pasangan serumahVeronique Roy(1990–2014)HubunganFrançois Duvalier(ayah)Simone Ovide(ibu)AnakNicolas DuvalierAnya DuvalierSunting kotak info • L • B Jean…

American cartoonist/comics artist (born 1957) Marc HempelMarc Hempel's Tug & BusterBorn (1957-05-25) May 25, 1957 (age 66)Chicago, IllinoisNationalityAmericanArea(s)IllustratorNotable worksGregoryThe Sandman: The Kindly OnesTug & BusterAwardsInkpot Award 1992[1] Marc Hempel (born May 25, 1957)[2] is an American cartoonist/comics artist best known for his work on The Sandman with Neil Gaiman. Biography Writer and artist Marc Hempel grew up in the northwest suburbs of …

Giunta regionale della Valle d'Aosta(FR) Gouvernement régional de la Vallée d'AosteStemma della Valle d'Aosta Il Palazzo della Regione, sede della Giunta Regionale della Valle d'Aosta Stato Italia Suddivisione Valle d'Aosta TipoGiunta regionale Istituito1946 PresidenteRenzo Testolin (UV) SedeAosta IndirizzoPiazza Deffeyes, 1 Sito webwww.regione.vda.it/ Modifica dati su Wikidata · Manuale La Giunta regionale della Valle d'Aosta (in francese, Gouvernement régional de la Vallée …

Ananda EveringhamLahir31 Mei 1982 (umur 41)Bangkok, ThailandKebangsaanAustralia (1982–2010)Thai (2010–present)[1]PekerjaanPemeranTahun aktif1998–sekarang Ananda Everingham (Thai: อนันดา เอเวอริงแฮมcode: th is deprecated ; lahir 31 Mei 1982) adalah seorang pemeran film Thai.[2] Utamanya berkarya dalam perfilman Thai, ia dikenal atas peran utamanya dalam film horor 2004, Shutter. Filmografi Film fitur Anda kub Fahsai (1998) 303 Fear…

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍總…

Eleventh version of the Android operating system Android KitKatVersion of the Android operating systemScreenshotAndroid 4.4.2 KitKat running on a Nexus 5DeveloperGoogleReleased tomanufacturingOctober 31, 2013; 10 years ago (2013-10-31)Final release4.4.4_r2.0.1 (KTU84Q)[1] / July 7, 2014; 9 years ago (2014-07-07)Kernel typeMonolithic (Linux)Preceded byAndroid 4.3.1 Jelly BeanSucceeded byAndroid 5.0 LollipopOfficial websitewww.android.com/versions/kit-ka…

Mixe (Mije)Ayüükjä'äyThe Sierra Mixe within Oaxaca, MexicoTotal population~90,000Regions with significant populationsMexico (Oaxaca), El Salvador (Ahuachapan)LanguagesMixe, SpanishReligionRoman Catholic, and Indigenous religionRelated ethnic groupsZoques PeopleAyuujkjä'äy (Mixe)LanguageAyöök (Mixe) The Mixe (Spanish mixe or rarely mije [ˈmixe]) are an Indigenous people of Mexico who live in the eastern highlands of the state of Oaxaca. They speak the Mixe languages, which are cl…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

Ancient Roman family Tullus Hostilius defeating the army of Veii and Fidenae, modern fresco. The gens Hostilia was an ancient family at Rome, which traced its origin to the time of Romulus. The most famous member of the gens was Tullus Hostilius, the third King of Rome; however, all of the Hostilii known from the time of the Republic were plebeians. Several of the Hostilii were distinguished during the Punic Wars. The first of the family to obtain the consulship was Aulus Hostilius Mancinus in 1…

MeistriliigaNegara EstoniaKonfederasiUEFADibentuk1992Jumlah tim10Tingkat pada piramida1Degradasi keEsiliigaPiala domestikPiala EstoniaPiala internasionalLiga ChampionsLiga EropaJuara bertahan ligaFC Flora (2022, gelar pertama)Klub tersuksesFlora (14 gelar)Penampilan terbanyakStanislav Kitto (515)[1]Pencetak gol terbanyakMaksim Gruznov (304)[2]Televisi penyiarERR, PostimeesSitus webpremiumliiga.ee Meistriliiga 2022 Meistriliiga (diucapkan [ˈmeistriliːɡ̊ɑː], atau di…

У этого термина существуют и другие значения, см. Тур. Запрос «Bos taurus primigenius» перенаправляется сюда; см. также другие значения. † Тур Скелет тура Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вт…

Kembali kehalaman sebelumnya